agents
AI Orchestrator Builder

AI Orchestrator Builder 🧠

Universal AI orchestration architect that reads framework documentation and generates production-ready multi-agent systems for LangGraph, CrewAI, AutoGen, AgentKit, and Claude Code SDK.

Perfect for: Building complex AI workflows, evaluating frameworks, or creating production multi-agent systems

Features

  • πŸ”„ Multi-Framework Support - Generate for one or all frameworks in parallel
  • πŸ“š Documentation-First - Fetches latest framework docs before generating
  • πŸ—οΈ Production Ready - Includes tests, security, and deployment configs
  • πŸ“Š Framework Comparison - Compare implementations side-by-side
  • 🎯 MCP Integration - Optional MCP server packaging for Claude Code

Quick Start

# Generate for all frameworks (comparison mode)
/agent ai-orchestrator "Build a document processing pipeline" --all
 
# Generate for specific framework
/agent ai-orchestrator "Build a customer support system" --framework langgraph
 
# Generate as MCP server
/agent ai-orchestrator "Build a data pipeline" --output mcp-server

Supported Frameworks

LangGraph

Best For: Complex stateful workflows with explicit control flow

Patterns:

  • Graph-based state management
  • Explicit node connections
  • Conditional routing
  • Streaming support

Example Use Cases:

  • Multi-step data processing pipelines
  • Complex decision trees
  • Workflows requiring rollback/checkpointing

Usage Examples

Example 1: Document Processing Pipeline

Build a system that extracts, validates, and stores document data.

Define Requirements

/agent ai-orchestrator "Build a document processing pipeline with:
- PDF extraction agent
- Data validation agent
- Storage agent
- Error handling and retry logic"

Choose Output Mode

# Option 1: Generate all frameworks for comparison
--all --output comparative
 
# Option 2: Single framework for production
--framework langgraph --output standalone
 
# Option 3: MCP server for Claude Code
--framework claudekit --output mcp-server

Review Generated Code

Agent generates:

output/
β”œβ”€β”€ langgraph/
β”‚   β”œβ”€β”€ src/
β”‚   β”‚   β”œβ”€β”€ agents/
β”‚   β”‚   β”‚   β”œβ”€β”€ extractor.py
β”‚   β”‚   β”‚   β”œβ”€β”€ validator.py
β”‚   β”‚   β”‚   └── storage.py
β”‚   β”‚   β”œβ”€β”€ workflow.py
β”‚   β”‚   └── main.py
β”‚   β”œβ”€β”€ tests/
β”‚   β”œβ”€β”€ pyproject.toml
β”‚   └── README.md
β”œβ”€β”€ crewai/
β”‚   └── [similar structure]
β”œβ”€β”€ autogen/
β”‚   └── [similar structure]
β”œβ”€β”€ agentkit/
β”‚   └── [similar structure]
β”œβ”€β”€ claudekit/
β”‚   └── [similar structure]
└── comparison.md

Deploy

cd output/langgraph
pip install -e .
pytest tests/
python src/main.py

Example 2: Customer Support Automation

Build a multi-agent customer support system.

/agent ai-orchestrator "Create a customer support system with:
- Triage agent (classify inquiries)
- Resolution agent (answer questions)
- Escalation agent (route to human)
- Sentiment analysis
- Knowledge base integration" --framework crewai

Generated Agents:

# CrewAI Implementation
from crewai import Agent, Task, Crew
 
# Triage Agent
triage_agent = Agent(
    role="Support Triage Specialist",
    goal="Classify and prioritize customer inquiries",
    backstory="Expert at understanding customer needs and routing appropriately",
    tools=[classify_intent, check_priority],
    verbose=True
)
 
# Resolution Agent
resolution_agent = Agent(
    role="Support Resolution Specialist",
    goal="Provide accurate answers to customer questions",
    backstory="Knowledgeable support expert with access to documentation",
    tools=[search_knowledge_base, generate_response],
    verbose=True
)
 
# Escalation Agent
escalation_agent = Agent(
    role="Escalation Manager",
    goal="Route complex issues to appropriate specialists",
    backstory="Experienced manager who knows when human intervention is needed",
    tools=[assign_to_human, notify_team],
    verbose=True
)
 
# Define workflow
triage_task = Task(
    description="Classify the customer inquiry and assess priority",
    agent=triage_agent,
    expected_output="Classification and priority level"
)
 
resolution_task = Task(
    description="Provide a helpful response to the customer",
    agent=resolution_agent,
    context=[triage_task],
    expected_output="Customer response"
)
 
# Create crew
support_crew = Crew(
    agents=[triage_agent, resolution_agent, escalation_agent],
    tasks=[triage_task, resolution_task],
    process="sequential"
)

Example 3: Data Pipeline with All Frameworks

Compare how different frameworks handle the same workflow.

/agent ai-orchestrator "Build a data pipeline that:
- Fetches data from APIs
- Transforms and enriches data
- Validates data quality
- Stores in database
- Sends notifications on completion" --all --output comparative

Comparison Analysis Generated:

FrameworkLOCComplexityBest ForPerformance
LangGraph250MediumComplex stateful workflows⭐⭐⭐⭐
CrewAI180LowRole-based coordination⭐⭐⭐
AutoGen220MediumConversational flows⭐⭐⭐
AgentKit200LowTool-heavy automation⭐⭐⭐⭐
Claude SDK160LowClaude-native apps⭐⭐⭐⭐⭐

Configuration Options

Output Formats

output_modes:
  standalone: "Complete project with CLI and API"
  mcp-server: "MCP server for Claude Code integration"
  library: "Reusable package for integration"
  all-parallel: "Generate all frameworks to compare"

Framework Selection

# Single framework
--framework langgraph
--framework crewai
--framework autogen
--framework agentkit
--framework claudekit
 
# Multiple frameworks
--frameworks langgraph,crewai
 
# All frameworks
--all

Customization

# Specify output directory
--output-dir ./my-workflow
 
# Include deployment configs
--with-deployment
 
# Add monitoring
--with-monitoring
 
# Custom naming
--name customer-support-system

Best Practices

1. Start with Comparison Mode

# Generate all frameworks first
/agent ai-orchestrator "Your workflow" --all
 
# Review comparison.md
cat output/comparison.md
 
# Choose best framework for your needs

2. Define Clear Agent Roles

good_example:
  agent1:
    role: "Data Extractor"
    responsibility: "Extract data from PDFs"
    inputs: ["pdf_file"]
    outputs: ["structured_data"]
 
bad_example:
  agent1:
    role: "Processor"
    responsibility: "Do stuff with data"

3. Handle Errors Explicitly

All generated agents include:

  • βœ… Try-catch error handling
  • βœ… Retry logic with exponential backoff
  • βœ… Detailed error logging
  • βœ… Graceful degradation

4. Test Before Deploy

cd output/{framework}
 
# Run tests
pytest tests/
 
# Integration tests
pytest tests/integration/
 
# Load tests (if applicable)
locust -f tests/load_test.py

Advanced Usage

Custom Agent Templates

Provide your own agent specifications:

# agents-spec.yaml
agents:
  - name: custom_agent
    description: "Your custom agent"
    tools: [tool1, tool2]
    llm_config:
      temperature: 0.7
      max_tokens: 2000
/agent ai-orchestrator --spec agents-spec.yaml --framework langgraph

Integration with Existing Systems

# Generated code is modular and reusable
from output.langgraph import DocumentWorkflow
 
# Initialize with your config
workflow = DocumentWorkflow(
    database_url=YOUR_DB_URL,
    api_keys=YOUR_API_KEYS
)
 
# Execute
result = await workflow.execute(input_data)

Monitoring and Observability

All generated workflows include:

# Structured logging
import structlog
logger = structlog.get_logger()
 
# Metrics
from prometheus_client import Counter, Histogram
request_counter = Counter('workflow_requests', 'Total requests')
duration_histogram = Histogram('workflow_duration', 'Request duration')
 
# Tracing (OpenTelemetry)
from opentelemetry import trace
tracer = trace.get_tracer(__name__)

Framework Decision Guide

When to Use LangGraph

βœ… Use when:

  • Complex state management required
  • Need explicit control flow
  • Debugging is critical
  • Checkpointing/rollback needed

❌ Avoid when:

  • Simple linear workflows
  • Rapid prototyping needed
  • Team unfamiliar with graphs

When to Use CrewAI

βœ… Use when:

  • Role-based agent teams
  • Task delegation patterns
  • Easy to understand workflows
  • Rapid development needed

❌ Avoid when:

  • Complex conditional logic
  • Need fine-grained control
  • Performance critical

When to Use AutoGen

βœ… Use when:

  • Conversational interfaces
  • Code generation workflows
  • Human-in-the-loop needed
  • Group collaboration patterns

❌ Avoid when:

  • Deterministic flows required
  • Strict control needed
  • Non-conversational tasks

When to Use AgentKit

βœ… Use when:

  • Tool-heavy workflows
  • API orchestration
  • Minimal abstraction preferred
  • ReAct pattern fits

❌ Avoid when:

  • Complex orchestration needed
  • Multi-agent collaboration
  • Sophisticated state management

When to Use Claude SDK

βœ… Use when:

  • Claude-optimized workflows
  • Computer use required
  • Minimal dependencies preferred
  • Direct API control needed

❌ Avoid when:

  • Multi-LLM support required
  • Framework abstractions helpful
  • Not Claude-specific

Troubleshooting

Documentation Fetch Fails

# Use cached docs
/agent ai-orchestrator "Your workflow" --use-cached-docs
 
# Specify docs manually
/agent ai-orchestrator "Your workflow" --docs-path ./framework-docs/

Generated Code Has Errors

# Validate before generating
/agent ai-orchestrator "Your workflow" --validate-only
 
# Regenerate with fixes
/agent ai-orchestrator "Your workflow" --fix-errors

Framework Not Suitable

# Review comparison first
/agent ai-orchestrator "Your workflow" --all --compare-only
 
# Then generate chosen framework
/agent ai-orchestrator "Your workflow" --framework {chosen}

Next Steps

Resources

Platform

Documentation

Community

Support

partnership@altsportsdata.comdev@altsportsleagues.ai

2025 Β© AltSportsLeagues.ai. Powered by AI-driven sports business intelligence.

πŸ€– AI-Enhancedβ€’πŸ“Š Data-Drivenβ€’βš‘ Real-Time