AI Orchestrator Builder π§
Universal AI orchestration architect that reads framework documentation and generates production-ready multi-agent systems for LangGraph, CrewAI, AutoGen, AgentKit, and Claude Code SDK.
Perfect for: Building complex AI workflows, evaluating frameworks, or creating production multi-agent systems
Features
- π Multi-Framework Support - Generate for one or all frameworks in parallel
- π Documentation-First - Fetches latest framework docs before generating
- ποΈ Production Ready - Includes tests, security, and deployment configs
- π Framework Comparison - Compare implementations side-by-side
- π― MCP Integration - Optional MCP server packaging for Claude Code
Quick Start
# Generate for all frameworks (comparison mode)
/agent ai-orchestrator "Build a document processing pipeline" --all
# Generate for specific framework
/agent ai-orchestrator "Build a customer support system" --framework langgraph
# Generate as MCP server
/agent ai-orchestrator "Build a data pipeline" --output mcp-serverSupported Frameworks
LangGraph
Best For: Complex stateful workflows with explicit control flow
Patterns:
- Graph-based state management
- Explicit node connections
- Conditional routing
- Streaming support
Example Use Cases:
- Multi-step data processing pipelines
- Complex decision trees
- Workflows requiring rollback/checkpointing
Usage Examples
Example 1: Document Processing Pipeline
Build a system that extracts, validates, and stores document data.
Define Requirements
/agent ai-orchestrator "Build a document processing pipeline with:
- PDF extraction agent
- Data validation agent
- Storage agent
- Error handling and retry logic"Choose Output Mode
# Option 1: Generate all frameworks for comparison
--all --output comparative
# Option 2: Single framework for production
--framework langgraph --output standalone
# Option 3: MCP server for Claude Code
--framework claudekit --output mcp-serverReview Generated Code
Agent generates:
output/
βββ langgraph/
β βββ src/
β β βββ agents/
β β β βββ extractor.py
β β β βββ validator.py
β β β βββ storage.py
β β βββ workflow.py
β β βββ main.py
β βββ tests/
β βββ pyproject.toml
β βββ README.md
βββ crewai/
β βββ [similar structure]
βββ autogen/
β βββ [similar structure]
βββ agentkit/
β βββ [similar structure]
βββ claudekit/
β βββ [similar structure]
βββ comparison.mdDeploy
cd output/langgraph
pip install -e .
pytest tests/
python src/main.pyExample 2: Customer Support Automation
Build a multi-agent customer support system.
/agent ai-orchestrator "Create a customer support system with:
- Triage agent (classify inquiries)
- Resolution agent (answer questions)
- Escalation agent (route to human)
- Sentiment analysis
- Knowledge base integration" --framework crewaiGenerated Agents:
# CrewAI Implementation
from crewai import Agent, Task, Crew
# Triage Agent
triage_agent = Agent(
role="Support Triage Specialist",
goal="Classify and prioritize customer inquiries",
backstory="Expert at understanding customer needs and routing appropriately",
tools=[classify_intent, check_priority],
verbose=True
)
# Resolution Agent
resolution_agent = Agent(
role="Support Resolution Specialist",
goal="Provide accurate answers to customer questions",
backstory="Knowledgeable support expert with access to documentation",
tools=[search_knowledge_base, generate_response],
verbose=True
)
# Escalation Agent
escalation_agent = Agent(
role="Escalation Manager",
goal="Route complex issues to appropriate specialists",
backstory="Experienced manager who knows when human intervention is needed",
tools=[assign_to_human, notify_team],
verbose=True
)
# Define workflow
triage_task = Task(
description="Classify the customer inquiry and assess priority",
agent=triage_agent,
expected_output="Classification and priority level"
)
resolution_task = Task(
description="Provide a helpful response to the customer",
agent=resolution_agent,
context=[triage_task],
expected_output="Customer response"
)
# Create crew
support_crew = Crew(
agents=[triage_agent, resolution_agent, escalation_agent],
tasks=[triage_task, resolution_task],
process="sequential"
)Example 3: Data Pipeline with All Frameworks
Compare how different frameworks handle the same workflow.
/agent ai-orchestrator "Build a data pipeline that:
- Fetches data from APIs
- Transforms and enriches data
- Validates data quality
- Stores in database
- Sends notifications on completion" --all --output comparativeComparison Analysis Generated:
| Framework | LOC | Complexity | Best For | Performance |
|---|---|---|---|---|
| LangGraph | 250 | Medium | Complex stateful workflows | ββββ |
| CrewAI | 180 | Low | Role-based coordination | βββ |
| AutoGen | 220 | Medium | Conversational flows | βββ |
| AgentKit | 200 | Low | Tool-heavy automation | ββββ |
| Claude SDK | 160 | Low | Claude-native apps | βββββ |
Configuration Options
Output Formats
output_modes:
standalone: "Complete project with CLI and API"
mcp-server: "MCP server for Claude Code integration"
library: "Reusable package for integration"
all-parallel: "Generate all frameworks to compare"Framework Selection
# Single framework
--framework langgraph
--framework crewai
--framework autogen
--framework agentkit
--framework claudekit
# Multiple frameworks
--frameworks langgraph,crewai
# All frameworks
--allCustomization
# Specify output directory
--output-dir ./my-workflow
# Include deployment configs
--with-deployment
# Add monitoring
--with-monitoring
# Custom naming
--name customer-support-systemBest Practices
1. Start with Comparison Mode
# Generate all frameworks first
/agent ai-orchestrator "Your workflow" --all
# Review comparison.md
cat output/comparison.md
# Choose best framework for your needs2. Define Clear Agent Roles
good_example:
agent1:
role: "Data Extractor"
responsibility: "Extract data from PDFs"
inputs: ["pdf_file"]
outputs: ["structured_data"]
bad_example:
agent1:
role: "Processor"
responsibility: "Do stuff with data"3. Handle Errors Explicitly
All generated agents include:
- β Try-catch error handling
- β Retry logic with exponential backoff
- β Detailed error logging
- β Graceful degradation
4. Test Before Deploy
cd output/{framework}
# Run tests
pytest tests/
# Integration tests
pytest tests/integration/
# Load tests (if applicable)
locust -f tests/load_test.pyAdvanced Usage
Custom Agent Templates
Provide your own agent specifications:
# agents-spec.yaml
agents:
- name: custom_agent
description: "Your custom agent"
tools: [tool1, tool2]
llm_config:
temperature: 0.7
max_tokens: 2000/agent ai-orchestrator --spec agents-spec.yaml --framework langgraphIntegration with Existing Systems
# Generated code is modular and reusable
from output.langgraph import DocumentWorkflow
# Initialize with your config
workflow = DocumentWorkflow(
database_url=YOUR_DB_URL,
api_keys=YOUR_API_KEYS
)
# Execute
result = await workflow.execute(input_data)Monitoring and Observability
All generated workflows include:
# Structured logging
import structlog
logger = structlog.get_logger()
# Metrics
from prometheus_client import Counter, Histogram
request_counter = Counter('workflow_requests', 'Total requests')
duration_histogram = Histogram('workflow_duration', 'Request duration')
# Tracing (OpenTelemetry)
from opentelemetry import trace
tracer = trace.get_tracer(__name__)Framework Decision Guide
When to Use LangGraph
β Use when:
- Complex state management required
- Need explicit control flow
- Debugging is critical
- Checkpointing/rollback needed
β Avoid when:
- Simple linear workflows
- Rapid prototyping needed
- Team unfamiliar with graphs
When to Use CrewAI
β Use when:
- Role-based agent teams
- Task delegation patterns
- Easy to understand workflows
- Rapid development needed
β Avoid when:
- Complex conditional logic
- Need fine-grained control
- Performance critical
When to Use AutoGen
β Use when:
- Conversational interfaces
- Code generation workflows
- Human-in-the-loop needed
- Group collaboration patterns
β Avoid when:
- Deterministic flows required
- Strict control needed
- Non-conversational tasks
When to Use AgentKit
β Use when:
- Tool-heavy workflows
- API orchestration
- Minimal abstraction preferred
- ReAct pattern fits
β Avoid when:
- Complex orchestration needed
- Multi-agent collaboration
- Sophisticated state management
When to Use Claude SDK
β Use when:
- Claude-optimized workflows
- Computer use required
- Minimal dependencies preferred
- Direct API control needed
β Avoid when:
- Multi-LLM support required
- Framework abstractions helpful
- Not Claude-specific
Troubleshooting
Documentation Fetch Fails
# Use cached docs
/agent ai-orchestrator "Your workflow" --use-cached-docs
# Specify docs manually
/agent ai-orchestrator "Your workflow" --docs-path ./framework-docs/Generated Code Has Errors
# Validate before generating
/agent ai-orchestrator "Your workflow" --validate-only
# Regenerate with fixes
/agent ai-orchestrator "Your workflow" --fix-errorsFramework Not Suitable
# Review comparison first
/agent ai-orchestrator "Your workflow" --all --compare-only
# Then generate chosen framework
/agent ai-orchestrator "Your workflow" --framework {chosen}Next Steps
- π Backend Builder - Add API layer to your orchestration
- π¨ Frontend Designer - Create UI for your workflow
- π§ Creating Custom Agents - Build specialized agents