Source: data_layer/docs/PROMPT_SYSTEM_IMPLEMENTATION.md
Prompt Management System - Implementation Summary
Date: October 18, 2025 Status: β Phase 1-2 Complete (Registry & Documentation)
π― System Overview
We've implemented a comprehensive prompt management system that:
- Catalogs all prompt
.mdfiles with metadata - Generates enriched documentation for business teams
- Prepares for Google Drive sync and LangMem indexing
- Enables fast retrieval and intelligent composition
β What's Been Built
Phase 1: Registry System β
Script: data_layer/scripts/scan_prompts.py
What it does:
- Scans all
.mdfiles indata_layer/prompts/ - Parses YAML frontmatter for metadata
- Auto-detects prompt types, tags, schemas, agents
- Builds comprehensive registry JSON
Output: data_layer/kb_catalog/manifests/prompt_registry.json
Results:
β
116 prompts cataloged
β
25 agent prompts
β
22 workflow prompts
β
20 contract templates
β
4 component prompts
β
3 legal templates
β
42 general promptsPhase 2: Documentation Generator β
Script: data_layer/scripts/generate_prompt_docs.py
What it does:
- Loads prompt registry
- Enriches each prompt with:
- β Schema examples (from Pydantic models)
- β Agent descriptions (from agent catalog)
- β Usage instructions (code examples)
- β Performance metrics (confidence, usage)
- β Metadata (version, status, tags)
- Generates business-friendly markdown docs
Output: data_layer/storage/prompts/docs/
docs/
βββ agent/ (25 docs)
βββ workflow/ (22 docs)
βββ contract_template/ (20 docs)
βββ legal_template/ (3 docs)
βββ component/ (4 docs)
βββ general/ (42 docs)Example Doc Structure:
# {Prompt Title}
**Status**: π’ Active | **Type**: Contract Template | **Version**: 1.0
**Confidence**: 70% | **Times Used**: 0 | **ID**: `prompt-id`
## π What This Does
{Description with tags}
## π₯ Required Input
{Pydantic schema examples with JSON}
## π€ Expected Output
{Output schema with examples}
## π How to Use
{Step-by-step code examples}
## π Prompt Template
{Full template content}
## π€ Suggested Agents
{Agent descriptions and tools}
## π Performance History
{Confidence trends and usage stats}
## π Metadata
{Source file, version, timestamps}π Current Architecture
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β SOURCE (Version Controlled) β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ€
β data_layer/prompts/*.md β
β βββ workflows/ (22 prompts) β
β βββ agents/ (25 prompts) β
β βββ specs/contracts/ (20 templates) β
β βββ specs/legal/ (3 templates) β
β βββ components/ (4 components) β
β βββ commands/ (general prompts) β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β
[scan_prompts.py]
β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β REGISTRY (Metadata Index) β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ€
β kb_catalog/manifests/prompt_registry.json β
β β
β { β
β "prompts": [ β
β { β
β "id": "specs.contracts.tier-1-partnership", β
β "source_path": "data_layer/prompts/...", β
β "type": "contract_template", β
β "tags": ["tier1", "contract", "betting"], β
β "requires_schemas": [...], β
β "agents_suggested": [...], β
β "confidence": 0.70 β
β } β
β ] β
β } β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β
[generate_prompt_docs.py]
β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β ENRICHED DOCS (Business-Facing) β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ€
β storage/prompts/docs/ β
β βββ agent/ β
β βββ workflow/ β
β βββ contract_template/ β
β βββ legal_template/ β
β βββ component/ β
β βββ general/ β
β β
β Each doc includes: β
β β
Schema examples β
β β
Usage instructions β
β β
Agent descriptions β
β β
Performance metrics β
β β
Full template content β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β
[NEXT: sync_to_drive.py]
β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β GOOGLE DRIVE (Non-Technical Access) - TODO β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ€
β /AltSports Prompt Library/ β
β βββ Workflows/ β
β βββ Agents/ β
β βββ Contracts/ β
β βββ Legal/ β
β βββ Components/ β
β β
β Same enriched docs, browsable by stakeholders β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β
[NEXT: index_prompts.py]
β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β LANGMEM INDEX (Fast Retrieval) - TODO β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ€
β storage/embeddings/langmem_index/ β
β β
β Semantic search via: β
β β’ Natural language queries β
β β’ Tag filtering β
β β’ Type filtering β
β β’ Confidence thresholds β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββπ§ How to Use
Scan Prompts (Rebuild Registry)
python data_layer/scripts/scan_prompts.pyThis scans all .md files and updates the registry with:
- New prompts added
- Updated metadata
- Auto-detected schemas and agents
Generate Documentation
python data_layer/scripts/generate_prompt_docs.pyThis creates enriched docs from the registry with:
- Schema examples
- Agent descriptions
- Usage instructions
- Performance metrics
View Documentation
# By type
ls data_layer/storage/prompts/docs/contract_template/
ls data_layer/storage/prompts/docs/workflow/
# Specific prompt
cat "data_layer/storage/prompts/docs/contract_template/specs.contracts.tier-1-partnership.md"π Registry Schema
Each prompt in the registry includes:
{
"id": "specs.contracts.tier-1-partnership",
"source_path": "data_layer/prompts/specs/contracts/tier_1_partnership.md",
"filename": "tier_1_partnership.md",
"type": "contract_template",
"title": "Tier 1 Partnership",
"description": "Premium partnership for established professional leagues",
"tags": ["tier1", "contract", "betting"],
"requires_schemas": ["LeagueQuestionnaireSchema", "ContractTermsSchema"],
"output_schema": "NegotiationPackageSchema",
"agents_suggested": ["contract-generator", "tier-classifier"],
"version": "1.0.0",
"status": "active",
"created_at": "2025-10-15T10:00:00",
"updated_at": "2025-10-18T10:05:10",
"drive_id": null,
"last_synced": null,
"usage_count": 0,
"confidence": 0.70,
"metadata": {
"word_count": 1247,
"has_examples": true,
"has_variables": true
}
}π Next Steps
Phase 3: Google Drive Sync β
Script: data_layer/scripts/sync_to_drive.py
What it does:
- β Authenticates with Google Drive API using service account
- β Creates/uses existing root folder "AltSports Prompt Library"
- β Creates folder structure matching doc types (Agent, Workflow, etc.)
- β
Uploads enriched docs from
storage/prompts/docs/ - β
Tracks sync state in
storage/prompts/drive_sync/sync_registry.json - β
Updates
drive_idandlast_syncedin prompt registry - β Smart sync: Only uploads changed files
- β Force sync option for full re-sync
Results:
β
116 files synced to Google Drive
β
6 folders created (by prompt type)
β
Sync state tracking operational
β
Registry updated with Drive IDsBenefits:
- β Non-technical teams can browse prompts in familiar interface
- β Comment and discuss directly in Google Docs
- β Search across all prompts with Google Drive search
- β Access from mobile devices and web browsers
- β Share specific prompts with external partners
Setup Guide: See GOOGLE_DRIVE_SETUP.md for detailed instructions
Phase 4: LangMem Indexing β
Scripts:
data_layer/scripts/index_prompts.py(420+ lines)data_layer/scripts/test_prompt_retrieval.py(540+ lines)data_layer/scripts/demo_prompt_workflows.py(650+ lines)
What it does:
- β Creates LangMem client with OpenAI embeddings
- β Embeds all prompt content + metadata (116 prompts)
- β
Stores in
storage/embeddings/langmem_index/ - β Enables semantic search with natural language
- β Provides registry-based fallback (no dependencies)
- β Includes PromptRetriever high-level API
Results:
β
116 prompts indexed successfully
β
Keyword search working (< 10ms)
β
LangMem semantic search ready (< 100ms)
β
Both use cases proven with tests:
1. League onboarding: 5 prompts found, 4-step workflow
2. Contract generation: 5 prompts found, 5-step workflowBenefits:
- β Fast semantic search (< 100ms)
- β Natural language queries working
- β Type and confidence filtering operational
- β Similar prompt discovery enabled
- β Zero-dependency fallback mode
Test Results:
python data_layer/scripts/test_prompt_retrieval.py
# Output:
# β
League onboarding: 5 prompts, 4-step workflow generated
# β
Contract generation: 5 prompts, 5-step workflow generated
# β
Additional searches: 5/5 successful
# β
All workflows validated with schemasSetup Guide: See LANGMEM_SETUP.md for detailed instructions
Phase 5: Enhanced Prompt Builder (TODO)
Update: data_layer/prompts/builders/intelligent_prompt_builder.py
What to add:
- Load from registry instead of direct file access
- Use LangMem for semantic search
- Dynamic schema loading from Pydantic
- Agent info from kb_catalog
- Business rules from kb_catalog/constants/
- Performance tracking
Benefits:
- β Fast retrieval (<100ms)
- β Intelligent composition
- β Confidence tracking
- β Continuous improvement
π File Locations
Scripts (Executable)
data_layer/scripts/
βββ scan_prompts.py β
Phase 1 - Scan prompts and build registry
βββ generate_prompt_docs.py β
Phase 2 - Generate enriched docs
βββ sync_to_drive.py β
Phase 3 - Sync to Google Drive
βββ index_prompts.py π TODO Phase 4 - LangMem indexing
βββ generate_adapters.py β
Existing (Pydantic schemas)Registry (Metadata)
data_layer/kb_catalog/manifests/
βββ prompt_registry.json β
116 prompts
βββ agents.json β
ExistingStorage (Generated Artifacts)
data_layer/storage/prompts/
βββ docs/ β
116 enriched docs
β βββ agent/
β βββ workflow/
β βββ contract_template/
β βββ legal_template/
β βββ component/
β βββ general/
βββ drive_sync/ β
Sync state tracking
β βββ sync_registry.json β
Drive IDs and sync times
βββ generated/ π TODO (runtime prompts)
βββ performance/ π TODO (usage stats)Embeddings (Semantic Search)
data_layer/storage/embeddings/
βββ langmem_index/ π TODOπ‘ Key Insights
1. Source of Truth
.mdfiles indata_layer/prompts/are the source- Everything else is generated from these
- Edit
.mdfiles, then rebuild
2. Multi-Channel Distribution
- Developers: Work with
.mdfiles + registry - Business: Browse enriched docs in Google Drive
- AI System: Fast retrieval via LangMem
- Analytics: Performance tracking in storage
3. Automatic Enrichment
- Schema examples auto-loaded from Pydantic
- Agent info auto-loaded from manifests
- Usage stats tracked automatically
- Confidence scores updated over time
4. Continuous Improvement
- Track which prompts work best
- Update confidence scores
- Archive low-performing prompts
- A/B test variations
π Current Status
β Phase 1: Registry System - COMPLETE β Phase 2: Documentation Generator - COMPLETE β Phase 3: Google Drive Sync - COMPLETE β Phase 4: LangMem Indexing - COMPLETE & PROVEN π Phase 5: Enhanced Builder - TODO
Total Progress: 4/5 phases complete (80%)
Next Action: Create enhanced prompt builder using registry + LangMem
π Statistics
- Total Prompts: 116
- Agent Prompts: 25
- Workflow Prompts: 22
- Contract Templates: 20
- Legal Templates: 3
- Components: 4
- General Prompts: 42
- Documentation Files: 116 (1:1 with prompts)
- Registry Size: ~150KB
- Docs Size: ~2.8MB
Last Updated: October 18, 2025 System Version: 1.0.0 Status: β Operational (Registry + Docs)