Source: data_layer/docs/QUICK_REFERENCE.md
Database Quick Reference
π Common Commands
Seeds (Development)
# Load a seed in Python
python -c "from database.schemas.seeds import load_seed; print(load_seed('leagues/mltt.seed.json'))"
# List all seeds
find database/schemas/seeds -name "*.seed.json" | wc -l
# Add new seed
vim database/schemas/seeds/leagues/new-league.seed.json
git add database/schemas/seeds/leagues/new-league.seed.jsonExamples (Production)
# Seed all examples
uv run python scripts/seed.examples.py
# Seed specific category
uv run python scripts/seed.examples.py --category triage
# Clear and reseed
uv run python scripts/seed.examples.py --clear --category triage
# Check seeded data
psql $DATABASE_URL -c "SELECT category, COUNT(*) FROM \"FewShotExample\" GROUP BY category;"Python Usage
# Development: Load seed
from database.schemas.seeds import load_seed
league = load_seed("leagues/mltt.seed.json")
# Production: Query examples
from database.storage.examples import FewShotExamplesAPI
api = FewShotExamplesAPI()
examples = await api.get_examples_for_prompt(
prompt_text="Premium basketball partnership",
prompt_type="triage",
max_examples=3
)
# Direct Prisma query
from prisma import Prisma
db = Prisma()
await db.connect()
examples = await db.fewshotexample.find_many(
where={"category": "triage", "quality_score": {"gte": 0.8}},
take=5
)π Directory Map
database/
βββ schemas/
β βββ seeds/ # Development test data (240+ files)
β β βββ leagues/ # 101 league definitions
β β βββ questionnaires/ # 53 questionnaire examples
β β βββ schemas/ # 105 schema seeds
β β βββ samples/ # 5 sample datasets
β β βββ synthetic_emails/ # 34 test emails
β β
β βββ examples/
β βββ few_shot/ # Future: Schema examples
β
βββ storage/
βββ examples/ # Production few-shot KB
βββ data/ # JSONL files (11 files, 349 lines)
βββ api.py # High-level API
βββ retriever.py # Core retrieval
βββ matcher.py # Similarity matching
βββ cache.py # LRU cacheπ― When to Use What
| Task | Use This |
|---|---|
| Writing unit tests | schemas/seeds/ |
| Development testing | schemas/seeds/ |
| Production AI queries | storage/examples/ |
| Semantic search | storage/examples/ API |
| Manual curation | Edit schemas/seeds/ JSON |
| Update prod examples | Edit storage/examples/*.jsonl β reseed |
| Fast retrieval | FewShotExamplesAPI |
β‘ Quick Wins
Find High-Quality Examples
SELECT example_id, category, quality_score, usage_count
FROM "FewShotExample"
WHERE quality_score > 0.85
ORDER BY usage_count DESC
LIMIT 10;Check Example Coverage
SELECT
category,
COUNT(*) as total,
COUNT(CASE WHEN quality_score >= 0.8 THEN 1 END) as high_quality,
AVG(quality_score) as avg_quality
FROM "FewShotExample"
GROUP BY category;Find Unused Examples
SELECT example_id, category, quality_score
FROM "FewShotExample"
WHERE usage_count = 0
AND created_at < NOW() - INTERVAL '30 days'
ORDER BY quality_score DESC;π§ Troubleshooting
Seeds Not Loading
# Check file exists
ls database/schemas/seeds/leagues/mltt.seed.json
# Validate JSON
python -m json.tool database/schemas/seeds/leagues/mltt.seed.jsonExamples Not Retrieving
# Check DB connection
echo $DATABASE_URL
# Check seeded count
psql $DATABASE_URL -c "SELECT COUNT(*) FROM \"FewShotExample\";"
# Reseed if needed
uv run python scripts/seed.examples.py --clearCache Issues
from database.storage.examples import ExampleCache
cache = ExampleCache()
cache.clear() # Reset cacheπ Full Documentation
- Architecture Guide:
database/DATA_ARCHITECTURE_GUIDE.md - Seeds README:
database/schemas/seeds/README.md - Examples README:
database/storage/examples/README.md - Retrieval System:
database/storage/RETRIEVAL_SYSTEM_README.md - Migration Guide:
database/storage/MIGRATION_GUIDE.md
π‘ Pro Tips
- Seeds are fast to edit - use for rapid iteration
- Examples need seeding - edit JSONL then run seed script
- Never edit DB directly - always edit JSONL files
- Quality matters - aim for 0.85+ quality_score
- Cache helps - FewShotExamplesAPI caches by default
- Track usage - high usage_count = valuable example
- Keep both - seeds and examples serve different purposes
Quick ref for database/schemas and database/storage systems Last Updated: 2025-01-14