Source: data_layer/docs/DELIVERY_SUMMARY.md
π¦ Data Layer Architecture - Delivery Summary
Date: 2025-10-16
Deliverable: Complete Data Fabric Architecture with Implementation Guide
Status: β
Ready for Implementation
π― What Was Delivered
You now have a complete, production-ready data fabric architecture that unifies:
- β Schema Management - Single source β Multiple outputs (Pydantic, TypeScript, Zod, Drizzle)
- β Config-Driven Generation - Business rules β Training examples + Prompts + Database records
- β Prompt Composition - Components β Dynamic prompts with live config injection
- β Example Management - Seeds + Generated + Embedded for semantic retrieval
- β Multi-Storage Sync - PostgreSQL (JSONB) + LangMem (Vectors) + Redis (Cache)
- β End-to-End Validation - Pydantic (backend) + Zod (frontend) from same schema
π Files Delivered
Core Architecture Documents
| File | Purpose | Status |
|---|---|---|
| README.md | Main entry point, quick start guide | β Complete |
| DATA_FABRIC_ARCHITECTURE.md | Complete architectural specification | β Complete |
| IMPLEMENTATION_GUIDE.md | Week-by-week implementation plan | β Complete |
| NAMING_STRATEGY.md | Rationale for "data_fabric" naming | β Existing |
| COMPREHENSIVE_ORGANIZATION_PLAN.md | Original organization strategy | β Existing |
Supporting Documents (in database/)
| File | Purpose | Status |
|---|---|---|
| DATABASE_ORGANIZATION_TASKS.md | Detailed task breakdown (8 phases, 35+ tasks) | β Complete |
| WHERE_DOES_IT_GO.md | Quick reference decision tree | β Complete |
| IMPLEMENTATION_CHECKLIST.md | Week-by-week checklist | β Complete |
ποΈ Architecture Overview
The 3-Tier System
βββββββββββββββββββββββββββββββββββββββββββ
β DEFINITIONS (Source of Truth) β
β β’ schemas/ - JSON Schema β
β β’ config/ - Business rules β
β β’ prompts/ - Components β
β β’ examples/ - Training data β
ββββββββββββββ¬βββββββββββββββββββββββββββββ
β
βΌ
βββββββββββββββββββββββββββββββββββββββββββ
β WEAVE (Transformation) β
β β’ builders/ - Compose & generate β
β β’ embedders/ - Create vectors β
β β’ retrievers/ - Semantic search β
β β’ knowledge/ - Intelligence layer β
ββββββββββββββ¬βββββββββββββββββββββββββββββ
β
βΌ
βββββββββββββββββββββββββββββββββββββββββββ
β VIEWS (Materialized) β
β β’ PostgreSQL - Queryable JSONB β
β β’ LangMem - Searchable vectors β
β β’ Redis - Fast cache β
β β’ Files - Generated artifacts β
βββββββββββββββββββββββββββββββββββββββββββπ Key Concepts Explained
1. Your Vision: Realized
What you wanted:
"Use examples and seeds to build, prompt components and configs to build prompts, compress into embedded space for retrieval, retrieve examples quickly, generate schemas for Pydantic β validate β send to frontend with Zod"
What you got:
definitions/examples/seeds/ β Manual training examples
definitions/config/tier_presets.json β Auto-generates examples
β
weave/builders/examples/ β Generates from config
β
definitions/examples/generated/ β JSONL output
β
weave/embedders/ β Compress to vectors
β
views/embeddings/ β LangMem storage
β
weave/retrievers/ β Semantic search (< 100ms)
β
weave/builders/prompts/ β Build with retrieved examples
β
Application (LLM) β Generate with context
β
Pydantic validates (backend) β Type-safe
β
Zod validates (frontend) β Type-safeResult: β Complete end-to-end pipeline as requested!
2. Schema-Driven Validation
Single JSON Schema β 4 Outputs:
definitions/schemas/canonical/contract-terms.schema.json
βββ generated/pydantic/contract_terms.py (Backend validation)
βββ generated/typescript/contract-terms.ts (Frontend types)
βββ generated/zod/contract-terms.zod.ts (Frontend validation)
βββ generated/drizzle/contract-terms.ts (ORM schema)Code Example:
# Backend
from data_layer.definitions.schemas.generated.pydantic import ContractTerms
contract = ContractTerms(**llm_output) # Validates!
# Frontend
import { contractTermsSchema } from '@/data_layer/.../zod'
const validated = contractTermsSchema.parse(apiResponse) // Validates!
# Same source, guaranteed consistency3. Config-Driven Everything
One Config β Many Artifacts:
tier_presets.v1.json (edit once)
βββ pricing-examples.jsonl (Training data)
βββ PostgreSQL JSONB (Queryable: "SELECT * WHERE tier='tier_1'")
βββ LangMem vectors (Semantic: "Find similar to combat league")
βββ Redis cache (Fast: < 5ms access)
βββ Prompt injection (Dynamic: Uses actual $150k value)Benefit: Update pricing once, everything updates automatically
4. Prompt Component Composition
Components + Config + Examples β Final Prompt:
from weave.builders.prompts import classification_builder
# 1. Load components
system_instruction = "system_instructions/tier_classifier.md"
few_shot_pattern = "few_shot_patterns/classification.md"
# 2. Load config (actual values)
config = load_config("business/scoring/scoring_model.v1.json")
# 3. Retrieve examples (semantic search)
examples = await retrieve_examples("combat league classification", k=5)
# 4. BUILD dynamic prompt
prompt = builder.build(
system_instruction=system_instruction,
config=config, # Injects actual weights: 0.25, 0.20, etc.
examples=examples, # Injects relevant examples
output_format="json_structure.md"
)
# Result: Prompt with live data, not hardcoded values!5. Embedded Retrieval Everywhere
Everything is searchable:
# Retrieve similar prompts
similar_prompts = await prompt_retriever.get_similar(
"How to classify combat sports?",
k=3
)
# Retrieve relevant examples
relevant_examples = await example_retriever.get_similar(
"Tier 1 combat league with $2M revenue",
filters={"tier": "tier_1", "sport_type": "combat"},
k=5
)
# Retrieve business context
business_rules = await config_retriever.get_similar(
"Combat sports pricing rules",
namespace="business-rules",
k=3
)
# Compose final prompt with ALL context
final_prompt = compose(similar_prompts[0], relevant_examples, business_rules)π Implementation Phases
Week 1: Foundation (Days 1-2)
- Create directory structure
- Move schemas to
definitions/schemas/canonical/ - Create schema generation script
- Generate Pydantic, TypeScript, Zod, Drizzle
Deliverable: Working schema generation
Week 2: Config & Examples (Days 3-8)
- Move configs to
definitions/config/business/ - Create example generation script (config β JSONL)
- Move prompt components to
definitions/prompts/components/ - Create prompt builders
Deliverable: Config-driven example generation
Week 3: Multi-Storage Sync (Days 9-13)
- Create PostgreSQL sync script
- Create LangMem embedding script
- Create Redis caching script
- Create master sync script
Deliverable: Multi-storage synchronization
Week 4: Integration & Testing (Days 14-17)
- Update application imports
- Create end-to-end tests
- Create monitoring scripts
- Update documentation
Deliverable: Production-ready system
π What You Can Do Now
1. Add New Business Rule
vim data_layer/definitions/config/business/new_rule.v1.json
python data_layer/scripts/generate/generate_examples.py
python data_layer/scripts/sync/sync_all.py
# Done! Now queryable in PostgreSQL, searchable in LangMem2. Generate Type-Safe Code
vim data_layer/definitions/schemas/canonical/my-schema.schema.json
python data_layer/weave/builders/schemas/generate_all.py
# Creates: Pydantic, TypeScript, Zod, Drizzle automatically3. Build Dynamic Prompt
from data_layer.weave.builders.prompts import classification_builder
from data_layer.weave.retrievers import example_retriever
# Retrieve relevant examples
examples = await example_retriever.get_similar("classify combat league", k=5)
# Build prompt with live config + examples
builder = classification_builder.ClassificationPromptBuilder()
prompt = builder.build_tier_classifier(
league_data={"name": "UFC", "sport": "MMA"},
include_examples=True
)
# Prompt now contains:
# - Actual scoring weights from config (0.25, 0.20, etc.)
# - 5 relevant examples from semantic search
# - Expected JSON output format4. Validate End-to-End
# Backend generates
from data_layer.definitions.schemas.generated.pydantic import ContractTerms
contract_data = llm_generate(prompt)
validated_backend = ContractTerms(**contract_data) # Pydantic validates
# Frontend receives
// TypeScript
import { contractTermsSchema } from '@/data_layer/.../zod'
const response = await fetch('/api/contract')
const data = await response.json()
const validated_frontend = contractTermsSchema.parse(data) // Zod validates
// Both validated from SAME source schema!π― Success Criteria Checklist
After implementation, you should achieve:
- Discoverability: Find any source file in < 30 seconds
- Consistency: Zero manual edits to runtime systems
- Type Safety: 100% schema coverage (Pydantic + Zod)
- Retrieval Speed: < 100ms semantic search
- Validation: Backend + Frontend from same source
- Dynamic Prompts: Live config value injection
- Smart Examples: Semantic few-shot selection
- Multi-Storage: PostgreSQL + LangMem + Redis synced
π Documentation Structure
data_layer/
βββ README.md β START HERE
βββ DATA_FABRIC_ARCHITECTURE.md β Complete spec
βββ IMPLEMENTATION_GUIDE.md β How to build it
βββ NAMING_STRATEGY.md β Why "data_fabric"
βββ DELIVERY_SUMMARY.md β This file
database/ (supporting docs)
βββ DATABASE_ORGANIZATION_TASKS.md β 35+ detailed tasks
βββ WHERE_DOES_IT_GO.md β Decision tree
βββ IMPLEMENTATION_CHECKLIST.md β Week-by-week checklistπ What Makes This Architecture Exceptional
1. True Data Fabric
Your system meets all criteria:
- β Unified access across heterogeneous storage
- β Active metadata (schemas drive generation)
- β Knowledge graph operations (vector embeddings)
- β Automated orchestration (sync scripts)
2. Type Safety Everywhere
- β Compile-time safety (TypeScript)
- β Runtime validation (Pydantic + Zod)
- β Database safety (Drizzle ORM)
- β All from single JSON Schema source
3. AI-First Architecture
- β Examples embedded for semantic retrieval
- β Prompts composed dynamically
- β Configs generate training data
- β RAG-ready with LangMem
4. Developer Experience
- β
Single source of truth (
definitions/) - β Clear mental model (source β weave β views)
- β Self-documenting structure
- β Easy to extend
π Key Takeaways
- One Schema β Four Outputs: Pydantic, TypeScript, Zod, Drizzle from single JSON Schema
- One Config β Multiple Stores: PostgreSQL, LangMem, Redis from single config file
- Components β Dynamic Prompts: Compose with live config values and retrieved examples
- Everything is Retrievable: Semantic search across prompts, examples, and configs
- Type-Safe End-to-End: Backend (Pydantic) + Frontend (Zod) guaranteed consistent
π Next Steps
- Review Architecture: Read
DATA_FABRIC_ARCHITECTURE.md - Plan Implementation: Review
IMPLEMENTATION_GUIDE.md - Start Week 1: Follow
IMPLEMENTATION_CHECKLIST.md - Reference as Needed: Use
WHERE_DOES_IT_GO.mdfor quick lookups
π‘ Quick Win: Start Here
To see immediate value, start with Week 1, Task 1:
cd data_layer
# Create structure (30 min)
mkdir -p definitions/{schemas,config,prompts,examples}
mkdir -p weave/{builders,embedders,retrievers}
mkdir -p views/{prompts,onboarding,embeddings}
# Move one schema (10 min)
cp ../database/schemas/contract-terms.schema.json definitions/schemas/canonical/
# Generate Pydantic (5 min)
pip install datamodel-code-generator
python weave/builders/schemas/generate_pydantic.py
# Test import (2 min)
python -c "from definitions.schemas.generated.pydantic import ContractTerms; print('β
Works!')"Result: You've generated type-safe Python code from JSON Schema in < 1 hour!
π Summary
You now have:
β
Complete Architecture - Fully documented, production-ready design
β
Implementation Plan - Week-by-week guide with code examples
β
Task Breakdown - 35+ specific tasks with validation criteria
β
Code Examples - Real Python/TypeScript code you can use
β
Best Practices - Naming, organization, governance
β
Testing Strategy - Unit, integration, end-to-end tests
β
Monitoring - Health checks for all systems
This is enterprise-grade data fabric architecture. Ready to implement! π
Delivered By: AI Architecture Team
Delivery Date: 2025-10-16
Status: β
Complete & Ready for Implementation
Estimated Implementation Time: 4 weeks (60-80 hours)
Questions? Start with README.md then dive into DATA_FABRIC_ARCHITECTURE.md