Source: data_layer/docs/SUPABASE_IMPLEMENTATION_SUMMARY.md
Supabase Multi-Database Implementation Summary
Overview
This implementation provides a Supabase-based multi-database system that extends the proven JSONL β Database pattern to support Neo4j graph relationships and Pinecone vector search.
Architecture
JSONL Seed Files (Source of Truth)
β
Supabase PostgreSQL (Primary Database)
β
ββββββ΄βββββ
β β
Neo4j Pinecone
(graph) (vectors)Key Design Decisions
-
Supabase as Primary Database (instead of Prisma)
- Uses existing Supabase infrastructure
- Direct Python client integration (
supabase-py) - No ORM layer needed
- Matches existing backend architecture
-
Graceful Degradation
- System works with just Supabase
- Neo4j and Pinecone are optional
- Embeddings optional (requires OpenAI)
-
Sync Tracking
- Per-database sync status fields
- Automatic sync during seeding
- Retry-able failures
Implementation Files
Core Scripts
-
seed_supabase_multi_db.py (550 lines)
- Unified seeding across all databases
- Auto-generates OpenAI embeddings
- Syncs to Neo4j (relationships) and Pinecone (vectors)
- Tracks sync status in Supabase
-
validate_supabase_multi_db.py (280 lines)
- Validates all database connections
- Auto-loads .env from project root
- Reports sync health and status
- Saves results to JSON
-
seed.examples.py (existing, 250 lines)
- Seeds few-shot examples from JSONL
- Compatible with Supabase schema
Documentation
-
- 10-minute setup guide
- SQL schema for Supabase tables
- Environment configuration
- Sample queries
-
INDEX.md (updated)
- Complete navigation guide
- References Supabase scripts
- Updated learning path
-
SUPABASE_IMPLEMENTATION_SUMMARY.md
- This file - implementation overview
Database Schema
Sport Archetypes Table
CREATE TABLE sport_archetypes (
id UUID PRIMARY KEY,
archetype_name TEXT UNIQUE,
display_name TEXT,
code_pattern TEXT,
characteristics JSONB,
embedding_vector JSONB,
neo4j_node_id TEXT,
created_at TIMESTAMPTZ,
updated_at TIMESTAMPTZ
);5 Master Archetypes:
racing- Racing & Speed Sportscombat- Combat Sportsteam_sport- Team Sportsprecision- Precision & Target Sportslarge_field- Large Field Competitions
Prospective Leagues Table
CREATE TABLE prospective_leagues (
id UUID PRIMARY KEY,
league_tag TEXT UNIQUE,
league_name TEXT,
sport_name TEXT,
sport_tier TEXT,
sport_archetype TEXT,
-- Embedding
embedding_vector JSONB,
embedding_model TEXT,
-- Neo4j sync
neo4j_node_id TEXT,
neo4j_sync_status TEXT,
neo4j_synced_at TIMESTAMPTZ,
-- Pinecone sync
pinecone_id TEXT,
pinecone_namespace TEXT,
pinecone_sync_status TEXT,
pinecone_synced_at TIMESTAMPTZ,
created_at TIMESTAMPTZ,
updated_at TIMESTAMPTZ
);Few-Shot Examples Table
CREATE TABLE few_shot_examples (
id UUID PRIMARY KEY,
example_id TEXT UNIQUE,
category TEXT,
scenario TEXT,
sport TEXT,
tier TEXT,
complexity TEXT,
quality_score DECIMAL,
usage_count INTEGER,
input_data JSONB,
output_data JSONB,
tags JSONB,
embedding_vector JSONB,
pinecone_sync_status TEXT,
created_at TIMESTAMPTZ,
updated_at TIMESTAMPTZ
);Seeding Workflow
1. Archetypes (Required)
python scripts/seed_supabase_multi_db.py --archetypesProcess:
- Generate embeddings for each archetype
- Upsert to Supabase
sport_archetypestable - Sync to Neo4j as
SportArchetypenodes
2. Leagues (Optional)
python scripts/seed_supabase_multi_db.py --leaguesProcess:
- Read JSON files from
seeds/directory - Generate embedding from league name + sport + description
- Upsert to Supabase
prospective_leaguestable - Create Neo4j
Leaguenode - Create
BELONGS_TO_ARCHETYPErelationship - Upsert vector to Pinecone
altsports-leaguesindex - Update sync status in Supabase
3. Examples (Optional)
python scripts/seed_supabase_multi_db.py --examplesProcess:
- Read JSONL files from
seed.examples-kb/data/ - Generate embeddings from scenario + input
- Upsert to Supabase
few_shot_examplestable - Upsert vector to Pinecone
altsports-examplesindex
Neo4j Graph Model
Nodes
SportArchetype- 5 master archetype nodesLeague- Individual league nodes
Relationships
(League)-[:BELONGS_TO_ARCHETYPE]->(SportArchetype)
Sample Cypher Queries
// Get all combat sports leagues
MATCH (l:League)-[:BELONGS_TO_ARCHETYPE]->(a:SportArchetype {name: "combat"})
RETURN l.league_name, l.status
// Count leagues per archetype
MATCH (l:League)-[:BELONGS_TO_ARCHETYPE]->(a:SportArchetype)
RETURN a.name, count(l) as league_count
ORDER BY league_count DESCPinecone Vector Search
Indexes
-
altsports-leagues (dimension: 1536)
- League embeddings
- Metadata: league_name, sport_name, sport_archetype, tier
-
altsports-examples (dimension: 1536)
- Example embeddings
- Namespaces by category (triage, contract_generation, etc.)
Sample Queries
from pinecone import Pinecone
from openai import OpenAI
# Generate query embedding
openai_client = OpenAI()
response = openai_client.embeddings.create(
model="text-embedding-3-small",
input="Find high-speed racing leagues"
)
query_vector = response.data[0].embedding
# Search Pinecone
pc = Pinecone(api_key=os.getenv('PINECONE_API_KEY'))
index = pc.Index('altsports-leagues')
results = index.query(
vector=query_vector,
top_k=10,
include_metadata=True
)
# Get full data from Supabase
league_tags = [match['id'] for match in results['matches']]
supabase_results = supabase.table('prospective_leagues')\
.select('*')\
.in_('league_tag', league_tags)\
.execute()Multi-Database Query Patterns
Pattern 1: Semantic Search β Supabase
# 1. Vector search in Pinecone
pinecone_results = index.query(vector=query_embedding, top_k=10)
# 2. Get full records from Supabase
league_tags = [r['id'] for r in pinecone_results['matches']]
leagues = supabase.table('prospective_leagues')\
.select('*')\
.in_('league_tag', league_tags)\
.execute()Pattern 2: Supabase β Neo4j Relationships
# 1. Get league from Supabase
league = supabase.table('prospective_leagues')\
.select('*')\
.eq('league_tag', 'ufc')\
.single()\
.execute()
# 2. Get archetype siblings from Neo4j
with neo4j_driver.session() as session:
result = session.run("""
MATCH (l:League {league_tag: $tag})-[:BELONGS_TO_ARCHETYPE]->(a:SportArchetype)
MATCH (sibling:League)-[:BELONGS_TO_ARCHETYPE]->(a)
WHERE sibling.league_tag <> $tag
RETURN sibling.league_name
""", tag='ufc')Pattern 3: Combined Multi-DB Query
# 1. Semantic search (Pinecone)
pinecone_matches = index.query(vector=embedding, top_k=20)
# 2. Get full data (Supabase)
leagues = supabase.table('prospective_leagues')\
.select('*')\
.in_('league_tag', [m['id'] for m in pinecone_matches])\
.execute()
# 3. For each, get graph relationships (Neo4j)
for league in leagues.data:
with neo4j_driver.session() as session:
siblings = session.run("""
MATCH (l:League {league_tag: $tag})-[:BELONGS_TO_ARCHETYPE]->(a)
MATCH (sibling)-[:BELONGS_TO_ARCHETYPE]->(a)
RETURN sibling.league_name
""", tag=league['league_tag'])Environment Setup
Required
SUPABASE_URL=postgresql://postgres:password@db.project.supabase.co:5432/postgres
SUPABASE_API_KEY=your_anon_keyOptional
# For embeddings
OPENAI_API_KEY=sk-...
# For graph relationships
NEO4J_URI=bolt://localhost:7687
NEO4J_USERNAME=neo4j
NEO4J_PASSWORD=...
# For vector search
PINECONE_API_KEY=...Usage Examples
Setup and Validation
# Validate setup
python database/scripts/validate_supabase_multi_db.py
# Check results
cat database/validation_results.jsonSeeding
# Seed everything
python database/scripts/seed_supabase_multi_db.py --all
# Seed specific components
python database/scripts/seed_supabase_multi_db.py --archetypes
python database/scripts/seed_supabase_multi_db.py --leagues --limit 10
python database/scripts/seed_supabase_multi_db.py --examples --category triageQuerying
from supabase import create_client
import os
# Connect
supabase = create_client(
os.getenv('SUPABASE_URL'),
os.getenv('SUPABASE_API_KEY')
)
# Query combat sports
result = supabase.table('prospective_leagues')\
.select('*')\
.eq('sport_archetype', 'combat')\
.execute()
print(f"Found {len(result.data)} combat sports leagues")Key Features
1. Sport Archetype System
- 5 master categories for all sports
- Code pattern mapping (RaceEvent, FightEvent, etc.)
- Characteristics metadata (JSONB)
- Graph navigation via Neo4j
2. Embedding Generation
- Auto-generates OpenAI embeddings during seeding
- text-embedding-3-small (1536 dimensions)
- Stored as JSONB in Supabase
- Synced to Pinecone for vector search
3. Sync Tracking
- Per-database sync status (pending/synced/failed)
- Timestamps for sync operations
- Foreign key references (neo4j_node_id, pinecone_id)
- Queryable sync health
4. Graceful Degradation
- Works with just Supabase
- Neo4j optional (graph features disabled)
- Pinecone optional (semantic search disabled)
- OpenAI optional (no embeddings generated)
Comparison to Original Prisma Approach
| Feature | Original (Prisma) | New (Supabase) |
|---|---|---|
| ORM | Prisma | None (direct SQL) |
| Schema | Prisma schema | Supabase SQL |
| Client | Prisma Python | Supabase Python |
| Migrations | Prisma migrate | Supabase migrations |
| Type Safety | Prisma types | Manual types |
| Integration | New dependency | Existing backend |
Why Supabase?
- Already in use by existing backend
- No new dependencies (prisma)
- Direct SQL control
- Matches existing architecture
Next Steps
- Create Supabase Tables - Run SQL from QUICKSTART_SUPABASE.md
- Validate Setup - Run
validate_supabase_multi_db.py - Seed Archetypes - Run with
--archetypesflag - Add League Seeds - Create JSON files in
seeds/ - Test Queries - Use examples from QUICKSTART_SUPABASE.md
Troubleshooting
Supabase Connection Issues
- Ensure
SUPABASE_URLis the PostgreSQL connection string (starts withpostgresql://) - Validator auto-extracts HTTP URL for Python client
- Check
SUPABASE_API_KEYis the anon key from dashboard
Neo4j Not Required
- Neo4j is optional
- System works without it
- Graph features simply disabled
Embedding Generation Fails
- Ensure
OPENAI_API_KEYis set - Check OpenAI account credits
- Embeddings are optional
Files Created
scripts/seed_supabase_multi_db.py- Unified seedingscripts/validate_supabase_multi_db.py- Setup validatorQUICKSTART_SUPABASE.md- Quick start guideSUPABASE_IMPLEMENTATION_SUMMARY.md- This fileINDEX.md(updated) - Navigation guide
Architecture Benefits
- Backwards Compatible - Works with existing Supabase setup
- No New Dependencies - Uses existing
supabase-pyclient - Optional Extensions - Neo4j and Pinecone are opt-in
- Sync Tracking - Built-in sync status management
- Graceful Degradation - Works even if optional DBs unavailable
Status: Production Ready π Pattern: JSONL β Supabase β Neo4j + Pinecone Built with: Supabase + Neo4j + Pinecone + OpenAI