Development
Claude Code Setup & Integration

Claude Code Setup & Integration

This guide covers the complete setup and usage of Claude Code with the AltSportsLeagues.ai project, including MCP server integration, custom commands, and development workflows.

Overview

The AltSportsLeagues.ai project leverages Claude Code extensively through:

  • 15+ MCP Server Integrations: n8n, Atlassian, Google Workspace, databases, and more
  • 350+ Custom Slash Commands: Organized by category for rapid development
  • 50+ Specialized Agents: Architecture, deployment, evaluation, and domain-specific agents
  • Real-time Workflow Automation: Integration with n8n for automated pipelines
  • Multi-Database Orchestration: Supabase, Neo4j, Firebase, and FAISS/ChromaDB

MCP Server Configuration

Configuration File Location

All MCP servers are configured in .cursor/mcp.json at the project root.

Primary MCP Servers

1. n8n-mcp (Production Workflow Automation)

Purpose: Production workflow automation and orchestration

Endpoint: https://altsportsdata.app.n8n.cloud

Capabilities:

  • 525+ n8n nodes with 263 AI-ready tools
  • Workflow creation, validation, and deployment
  • Template library with 1000+ workflows
  • Real-time workflow execution and monitoring
  • Node search and documentation access

Common Use Cases:

// Search for workflow nodes
mcp__n8n-mcp__search_nodes({ query: "slack" })
 
// Create workflow
mcp__n8n-mcp__n8n_create_workflow({
  name: "League Onboarding Pipeline",
  nodes: [...],
  connections: {...}
})
 
// Trigger workflow via webhook
mcp__n8n-mcp__n8n_trigger_webhook_workflow({
  webhookUrl: "https://altsportsdata.app.n8n.cloud/webhook/...",
  data: { leagueId: "123" }
})

Configuration:

{
  "n8n-mcp": {
    "command": "npx",
    "args": ["n8n-mcp"],
    "env": {
      "MCP_MODE": "sse",
      "LOG_LEVEL": "error",
      "N8N_API_URL": "https://altsportsdata.app.n8n.cloud",
      "N8N_API_KEY": "your-api-key"
    }
  }
}

2. n8n-mcp-local (Development Instance)

Purpose: Development and testing workflows

Endpoint: https://n8n.altsportsleagues.ai

Use Cases:

  • Local workflow development
  • Custom league onboarding pipelines
  • Integration testing

3. Atlassian (Jira & Confluence)

Purpose: Project management and documentation automation

Capabilities:

  • Create Jira issues from league questionnaires
  • Update project status automatically
  • Search and retrieve Confluence documentation
  • Automated ticket creation and updates

Docker-based MCP Server:

{
  "atlassian": {
    "command": "docker",
    "args": [
      "run", "-i", "--rm",
      "-v", "/app/output:/app/output",
      "-e", "JIRA_URL",
      "-e", "JIRA_API_TOKEN",
      "ghcr.io/sooperset/mcp-atlassian:latest"
    ],
    "env": {
      "JIRA_URL": "https://altsportsdata.atlassian.net",
      "JIRA_USERNAME": "your-email@example.com",
      "JIRA_API_TOKEN": "your-token"
    }
  }
}

Example Usage:

// Create Jira ticket for new league
mcp__atlassian__jira_create_issue({
  project: "ASD",
  summary: "New League Onboarding: PWHL",
  description: "Process league questionnaire and generate contract",
  issueType: "Task"
})
 
// Search Confluence for similar leagues
mcp__atlassian__confluence_search({
  query: "ice hockey leagues",
  limit: 10
})

4. Google Workspace Integration

Three MCP Servers for Google Services:

  1. gdrive: File management and sharing
  2. google-workspace: Gmail, Calendar, Sheets
  3. mcp-gdrive-sheets: Advanced Sheets operations

Use Cases:

  • Process league questionnaire PDFs from Drive
  • Extract data from Google Sheets
  • Send automated emails via Gmail
  • Schedule follow-ups in Calendar

5. League Discovery Cross-Comparison

Custom Python MCP Server:

python -m apps.backend.mcp_servers.servers.league_discovery_cross_comparison_mcp

Purpose:

  • Discover new leagues across multiple sources
  • Cross-compare league data
  • Identify partnership opportunities
  • Analyze market segments

Database: Connected to Supabase production instance

6. Development Tools

playwright: Browser automation and testing

  • End-to-end testing
  • Screenshot generation
  • User flow validation

puppeteer: Web scraping and data extraction

  • League website scraping
  • Social media monitoring
  • Competitor analysis

sequential-thinking: Advanced reasoning

  • Complex multi-step analysis
  • Decision tree exploration
  • Strategic planning

memory: Persistent context

  • Store important findings across sessions
  • Maintain conversation context
  • Build knowledge base

7. Database MCP Servers

postgres: Direct PostgreSQL access sqlite: Local database operations supabase: Custom Supabase MCP for relational data

Use Cases:

  • Direct database queries when API overhead is unnecessary
  • Batch data operations
  • Schema migrations
  • Performance testing

8. Infrastructure & Cloud

docker: Container management

  • Build and deploy containers
  • Manage container lifecycle
  • View logs and metrics

kubernetes: K8s operations

  • Deploy to clusters
  • Scale services
  • Monitor deployments

aws: AWS service integration

  • S3 file operations
  • Lambda function management
  • CloudWatch logs

Custom Slash Commands

The project includes 350+ custom slash commands organized by category.

Command Categories

Prime Commands (/prime-*)

Initialize Claude Code context for specific development areas.

Available Primes:

  • /prime-nextjs: Next.js frontend development
  • /prime-python: Python backend development
  • /prime-mcp: MCP server development
  • /prime-altsportsdata: Business intelligence platform
  • /prime-n8n: n8n workflow automation
  • /prime-db-advisor: Database selection and architecture

Example Usage:

# Start Next.js development session
/prime-nextjs
 
# Initialize Python backend context
/prime-python
 
# Prepare for MCP server development
/prime-mcp

Database Commands (/database:*)

Comprehensive database operations across multiple backends.

ETL Operations:

  • /database:etl:database.etl.supabase.crud-operations: Test CRUD operations
  • /database:etl:database.etl.supabase.health-check: Comprehensive health validation
  • /database:etl:database.etl.ai.google-vertex-single-query-test: Test RAG queries

Neo4j Graph Operations:

  • /database:etl:database.etl.neo4j.graph-database-connectivity: Test graph connections
  • /neo4j-league-exploration: Comprehensive league graph exploration

Firebase Real-time:

  • /database:etl:database.etl.firebase.firestore-connectivity-test: Test Firestore

Example:

# Test Supabase connectivity and schema
/database:etl:database.etl.supabase.database-connectivity-test
 
# Run comprehensive database health check
/database:etl:database.etl.supabase.health-check
 
# Test Neo4j graph queries
/database:etl:database.etl.neo4j.graph-database-connectivity

Media Commands (/media:email:*)

Email processing and intelligence workflows.

Available Commands:

  • /media:email:process-email-attachments: Extract league questionnaires
  • /media:email:scan-inbox-summary: Generate inbox intelligence
  • /media:email:fetch-recent-emails: Retrieve and filter emails
  • /media:email:action-evaluate-satisfaction: Evaluate response quality

Example:

# Process new league questionnaire from email
/media:email:process-email-attachments
 
# Generate daily inbox summary
/media:email:scan-inbox-summary

Deployment Commands (/deploy:*)

Automated deployment workflows.

Available Deployments:

  • /deploy:google.cloud-deployment: Deploy backend to Cloud Run
  • /deploy:deploy-docs: Deploy documentation site to Vercel
  • /deploy:prd.google-cloud-generator: Generate PRD for Cloud deployment

Example:

# Deploy backend API to Google Cloud Run
/deploy:google.cloud-deployment
 
# Deploy docs site to Vercel
/deploy:deploy-docs

Evaluation Commands (/evals:*)

Comprehensive testing and quality assurance.

Available Evaluations:

  • /evals:cook-eval-loop: Master orchestration for 80% β†’ 100% production readiness
  • /evals:email-testing-orchestration: Email system comprehensive testing
  • /evals:test-contract-downloads: Contract accessibility verification

Example:

# Run comprehensive evaluation cycle
/evals:cook-eval-loop
 
# Test email processing pipeline
/evals:email-testing-orchestration

AltSportsData Commands (/altsportsdata:*)

Business intelligence and partnership workflows.

Categories:

  • Enhancement: Data processing and enrichment
  • Analytics: Knowledge base and insights
  • Intelligence: Workflow orchestration

Example Commands:

# Convert league questionnaire to contract
/altsportsdata:convert-league-questionnaire-to-contracts
 
# Analyze league data compatibility
/altsportsdata:08-intelligence:altsportsdata.intelligence.55.league-contract-tier-classification-comparison-flow
 
# Generate usage cost analysis
/altsportsdata:08-intelligence:altsportsdata.intelligence.81.usage-cost-analyzer-flow

Custom Agents

The project includes 50+ specialized agents for different development tasks.

Agent Categories

1. Architects

System Design Agents:

  • system-architect: Senior system architect with 15+ years experience
  • backend-typescript-architect: Backend TypeScript/Bun specialist
  • frontend-developer: React/Next.js frontend expert
  • data-architect: Database and data platform design
  • security-architect: Security and compliance specialist

Usage:

# Launch system architecture review
@system-architect
 
# Design backend API architecture
@backend-typescript-architect
 
# Plan frontend component structure
@frontend-developer

2. Deployment Specialists

Multi-Phase Deployment:

  • multi-phase-deployment-orchestrator: Complete deployment pipeline
  • gcloud-deployment-specialist: Google Cloud Run deployment
  • vercel-deployment-specialist: Vercel edge deployment
  • github-deployment-specialist: GitHub Actions workflows

Usage:

# Orchestrate full deployment
@multi-phase-deployment-orchestrator
 
# Deploy to Cloud Run
@gcloud-deployment-specialist

3. Evaluation & Testing

Quality Assurance Agents:

  • production-readiness-evaluator: 80% β†’ 100% production readiness
  • test.evals.nextjs-react-modern-web: Next.js app evaluation
  • test.evals.production-deployment: Deployment readiness check
  • fastapi-testing-specialist: FastAPI comprehensive testing

4. Specialist Agents

Domain Experts:

  • mcp-engineer: MCP server development specialist
  • n8n agents: Workflow automation experts
  • ui-generation-agent: UI component generation
  • refactor-agent: Code quality improvement

Development Workflows

Workflow 1: New League Onboarding

Steps:

  1. Prime Claude Code:
/prime-altsportsdata
  1. Process Email with Questionnaire:
/media:email:process-email-attachments
  1. Generate Contract:
/altsportsdata:convert-league-questionnaire-to-contracts
  1. Create Jira Ticket (via MCP):
mcp__atlassian__jira_create_issue({
  project: "ASD",
  summary: "New League: [LEAGUE_NAME]",
  description: "Contract generated and ready for review"
})
  1. Deploy to Database:
/database:etl:database.etl.supabase.altsports-league-onboarding

Workflow 2: MCP Server Development

Steps:

  1. Prime for MCP Development:
/prime-mcp
  1. Use MCP Scaffolding Agent:
@mcp-server-scaffolder
 
# Or generate single-file MCP
@meta-sfmcp-generator
  1. Test with n8n Integration:
// Validate MCP server works with n8n
mcp__n8n-mcp__validate_workflow({
  workflow: {...}
})
  1. Deploy to Cloud Run:
/deploy:google.cloud-deployment

Workflow 3: Frontend Development

Steps:

  1. Prime for Next.js:
/prime-nextjs
  1. Generate UI Components:
@ui-generation-agent
 
# Or use specific UI architect
@ui-sidebar-architect
  1. Test with Playwright:
// Use Playwright MCP for testing
mcp__playwright__navigate({ url: "http://localhost:3000" })
mcp__playwright__screenshot({ path: "test.png" })
  1. Deploy to Vercel:
/deploy:deploy-docs

Workflow 4: Data Pipeline Testing

Steps:

  1. Test Database Connectivity:
/database:etl:database.etl.supabase.database-connectivity-test
  1. Run ETL Operations:
/database:etl:database.etl.supabase.crud-operations
  1. Validate with Neo4j:
/database:etl:database.etl.neo4j.graph-database-connectivity
  1. Check Vector Embeddings:
/database:etl:database.etl.ai.google-vertex-single-query-test

Best Practices

MCP Server Usage

  1. Use n8n-mcp for Automation:

    • Batch operations
    • Scheduled workflows
    • Multi-step pipelines
  2. Leverage Atlassian MCP:

    • Automatic ticket creation
    • Documentation updates
    • Project tracking
  3. Database MCP Strategy:

    • Use Supabase MCP for relational queries
    • Neo4j MCP for graph traversals
    • FAISS/ChromaDB for semantic search

Slash Command Best Practices

  1. Start with Prime Commands:

    • Initialize context before development
    • Load relevant documentation
    • Set up environment variables
  2. Use Evaluation Commands Regularly:

    • Run /evals:cook-eval-loop before deployment
    • Test email workflows with /evals:email-testing-orchestration
  3. Leverage Database Commands:

    • Test connectivity before operations
    • Run health checks regularly
    • Validate schemas after changes

Agent Best Practices

  1. Architecture First:

    • Use architect agents for design phase
    • Get system design review before implementation
  2. Specialized Agents for Complex Tasks:

    • MCP development β†’ @mcp-engineer
    • UI generation β†’ @ui-generation-agent
    • Code quality β†’ @refactor-agent
  3. Evaluation Agents Before Deployment:

    • @production-readiness-evaluator
    • @test.evals.production-deployment

Troubleshooting

MCP Server Not Available

Issue: MCP server not responding

Solution:

# Check MCP server status
cat .cursor/mcp.json | jq '.mcpServers.["n8n-mcp"]'
 
# Restart MCP server
# Claude Code will auto-restart on next use

Slash Command Not Found

Issue: Custom command not recognized

Solution:

# Check command exists
ls .claude/commands/
 
# Verify command syntax
cat .claude/commands/database/etl/database.etl.supabase.database-connectivity-test.md

Agent Not Loading

Issue: Agent configuration not loading

Solution:

# Check agent exists
ls .claude/agents/
 
# Verify agent configuration
cat .claude/agents/architects/system-architect.md

Additional Resources

Support

For issues with Claude Code setup:

  1. Check .cursor/mcp.json configuration
  2. Verify environment variables in .env.local
  3. Review agent/command documentation
  4. Consult project CLAUDE.md at repository root

Platform

Documentation

Community

Support

partnership@altsportsdata.comdev@altsportsleagues.ai

2025 Β© AltSportsLeagues.ai. Powered by AI-driven sports business intelligence.

πŸ€– AI-Enhancedβ€’πŸ“Š Data-Drivenβ€’βš‘ Real-Time