Testing & QA Framework

Testing & QA Framework

The AltSportsLeagues.ai Testing & QA Framework provides comprehensive quality assurance through multi-layered testing strategies, AI-powered evaluation with 6 specialized personas, and continuous quality monitoring. Built on pytest, Vitest, Playwright, and custom AI testing infrastructure, the framework ensures production-grade reliability for the entire platform, from backend services to frontend applications.

Core Philosophy: Prevention over detection, automation over manual effort, quality as code. The framework integrates with the existing schema-driven data layer, leveraging 150+ Pydantic models for type-safe testing and validated fixtures.

Tech Stack:

  • Backend Testing: pytest + pytest-asyncio + TestClient
  • Frontend Testing: Vitest + React Testing Library + Playwright
  • AI Testing: 6-persona evaluation framework (OpenAI/Anthropic)
  • Performance: Locust + k6 + Grafana
  • Security: Bandit + Safety + OWASP ZAP
  • Coverage: Coverage.py + c8 + SonarQube
  • CI/CD: GitHub Actions + Cloud Build

Executive Summary

The Testing & QA Framework addresses the need for robust quality assurance in a complex, AI-powered platform handling sports league data, partnerships, and betting operations. By implementing comprehensive testing across all layers (unit, integration, E2E, performance, security), AI-driven evaluation, and continuous monitoring, the framework ensures the platform meets enterprise-grade reliability standards.

Key Features:

  • Multi-Layer Testing: Unit, integration, E2E, performance, security testing
  • AI-Powered Evaluation: 6 specialized personas for diverse perspective testing
  • Schema Integration: Type-safe testing using 150+ Pydantic models from data-layer-registry
  • Automated CI/CD: Quality gates preventing deployment of untested code
  • Performance Monitoring: Load testing and real-time metrics
  • Security Scanning: Automated vulnerability detection and remediation

The framework achieves >80% code coverage, <1% test failure rate, and ensures all critical user flows are covered by automated tests.

System Architecture

High-Level Testing Architecture

Detailed Requirements

REQ-TQF-001: Unit Testing Infrastructure

User Story: As a developer, I want comprehensive unit testing infrastructure, so that I can verify individual components work correctly in isolation.

Acceptance Criteria

  1. WHEN writing backend tests, THE Testing_Framework SHALL use pytest with async support
  2. WHEN writing frontend tests, THE Testing_Framework SHALL use Vitest with React Testing Library
  3. WHEN running unit tests, THE Testing_Framework SHALL achieve 80%+ code coverage
  4. WHEN mocking dependencies, THE Testing_Framework SHALL provide fixture factories and mock generators
  5. WHEN tests fail, THE Testing_Framework SHALL provide clear error messages with stack traces

Implementation Example (Backend - pytest)

"""
Unit tests for LeagueAnalysisService using Pydantic schemas
from data-layer-registry for type-safe testing.
"""
import pytest
from unittest.mock import AsyncMock, patch
from datetime import datetime
 
# Import schemas from data-layer-registry
from apps.backend.schemas.league import (
    LeagueSchema,
    LeagueAnalysisRequest,
    LeagueAnalysisResponse,
    PartnershipScoreSchema,
    TierRecommendationSchema
)
from apps.backend.schemas.scoring import (
    ScoringDimensionSchema,
    ScoreBreakdownSchema
)
from apps.backend.services.league_analysis_service import LeagueAnalysisService
from apps.backend.tests.fixtures.league_fixtures import (
    league_factory,
    analysis_request_factory,
    mock_ai_client
)
 
 
class TestLeagueAnalysisService:
    """Test suite for League Analysis Service"""
 
    @pytest.fixture
    def service(self, mock_ai_client):
        """Create service instance with mocked AI client"""
        return LeagueAnalysisService(ai_client=mock_ai_client)
 
    @pytest.fixture
    def sample_league(self):
        """Generate sample league using factory with schema validation"""
        return league_factory.create(
            name="Premier Lacrosse League",
            sport="Lacrosse",
            region="North America",
            tier=None  # To be determined by analysis
        )
 
    @pytest.mark.asyncio
    async def test_analyze_league_success(self, service, sample_league):
        """
        GIVEN: A valid league object conforming to LeagueSchema
        WHEN: analyze_league() is called
        THEN: Returns LeagueAnalysisResponse with tier recommendation
        """
        # Create request using schema
        request = LeagueAnalysisRequest(
            league_name=sample_league.name,
            website_url="https://premierlacrosseleague.com",
            contact_email="partnerships@pll.com"
        )
 
        # Execute analysis
        response = await service.analyze_league(request)
 
        # Validate response schema
        assert isinstance(response, LeagueAnalysisResponse)
        assert response.league_name == sample_league.name
        assert response.recommended_tier in ["1.1", "1.2", "2.1", "2.2", "3.1", "3.2", "4.1", "4.2"]
        assert 0 <= response.partnership_score.total_score <= 100
 
        # Validate scoring dimensions
        assert len(response.partnership_score.dimensions) == 7
        dimension_names = {d.dimension_name for d in response.partnership_score.dimensions}
        expected_dimensions = {
            "market_size", "data_availability", "betting_popularity",
            "growth_potential", "technical_feasibility",
            "partnership_readiness", "revenue_potential"
        }
        assert dimension_names == expected_dimensions
 
    @pytest.mark.asyncio
    async def test_analyze_league_invalid_data(self, service):
        """
        GIVEN: Invalid league data (fails schema validation)
        WHEN: analyze_league() is called
        THEN: Raises ValidationError with detailed message
        """
        from pydantic import ValidationError
 
        with pytest.raises(ValidationError) as exc_info:
            request = LeagueAnalysisRequest(
                league_name="",  # Invalid: empty string
                website_url="not-a-url",  # Invalid URL format
                contact_email="invalid-email"  # Invalid email
            )
 
        errors = exc_info.value.errors()
        assert len(errors) >= 3
 
    @pytest.mark.asyncio
    async def test_scoring_breakdown_calculation(self, service, sample_league):
        """
        GIVEN: A league with known characteristics
        WHEN: Partnership score is calculated
        THEN: Each dimension score is weighted correctly
        """
        request = LeagueAnalysisRequest(
            league_name=sample_league.name,
            website_url="https://example.com",
            contact_email="test@example.com"
        )
 
        with patch.object(service, '_fetch_market_data') as mock_market:
            # Mock market data with known values
            mock_market.return_value = {
                "market_size": 85,
                "data_availability": 70,
                "betting_popularity": 60
            }
 
            response = await service.analyze_league(request)
 
            # Verify weighted calculation
            breakdown = response.partnership_score
            total = sum(d.score * d.weight for d in breakdown.dimensions)
            expected_total = total / sum(d.weight for d in breakdown.dimensions)
 
            assert abs(breakdown.total_score - expected_total) < 0.01

Pytest Configuration

[pytest]
testpaths = tests
python_files = test_*.py
python_classes = Test*
python_functions = test_*
asyncio_mode = auto
markers =
    unit: Unit tests (fast, isolated)
    integration: Integration tests (slower, requires services)
    slow: Slow tests (>1s execution time)
    ai_persona: AI persona evaluation tests
    security: Security-focused tests
addopts =
    --strict-markers
    --cov=apps/backend
    --cov-report=html
    --cov-report=term-missing
    --cov-fail-under=80
    --maxfail=5
    -v

REQ-TQF-002: Integration Testing System

User Story: As a QA engineer, I want integration tests that verify component interactions, so that I can ensure modules work together correctly.

Acceptance Criteria

  1. WHEN testing API endpoints, THE Testing_Framework SHALL use TestClient for FastAPI routes
  2. WHEN testing database operations, THE Testing_Framework SHALL use test databases with transaction rollback
  3. WHEN testing external integrations, THE Testing_Framework SHALL use contract testing (Pact)
  4. WHEN testing async workflows, THE Testing_Framework SHALL handle async/await patterns correctly
  5. WHEN tests complete, THE Testing_Framework SHALL cleanup resources automatically

Implementation Example

# apps/backend/tests/integration/test_league_integration.py
import pytest
from httpx import AsyncClient
from apps.backend.main import app
from apps.backend.tests.fixtures.database_fixtures import (
    create_test_database,
    truncate_tables
)
 
@pytest.mark.asyncio
async def test_league_creation_workflow():
    """
    Integration test for complete league creation workflow
    Tests: API endpoint -> Database persistence -> Schema validation
    """
    # Setup test database
    test_db = await create_test_database()
    
    # Create test client
    async with AsyncClient(app=app, base_url="http://test") as ac:
        # Test 1: Create league via API
        response = await ac.post(
            "/api/leagues",
            json={
                "name": "Test League Integration",
                "sport": "Basketball",
                "region": "North America",
                "contact_email": "test@league.com"
            },
            headers={"Authorization": "Bearer test_token"}
        )
        
        assert response.status_code == 201
        created_league = response.json()
        assert created_league["name"] == "Test League Integration"
        assert "id" in created_league
        
        # Test 2: Verify database persistence
        league_id = created_league["id"]
        db_league = await test_db.fetchrow(
            "SELECT * FROM leagues WHERE id = $1",
            (league_id,)
        )
        assert db_league["name"] == "Test League Integration"
        assert db_league["sport"] == "Basketball"
        
        # Test 3: Update league via API
        update_response = await ac.put(
            f"/api/leagues/{league_id}",
            json={
                "name": "Updated League Integration",
                "sport": "Basketball",
                "region": "Europe"
            },
            headers={"Authorization": "Bearer test_token"}
        )
        
        assert update_response.status_code == 200
        updated_league = update_response.json()
        assert updated_league["name"] == "Updated League Integration"
        assert updated_league["region"] == "Europe"
        
        # Test 4: Verify database update
        db_updated = await test_db.fetchrow(
            "SELECT * FROM leagues WHERE id = $1",
            (league_id,)
        )
        assert db_updated["name"] == "Updated League Integration"
        assert db_updated["region"] == "Europe"
        
        # Test 5: Delete league via API
        delete_response = await ac.delete(
            f"/api/leagues/{league_id}",
            headers={"Authorization": "Bearer test_token"}
        )
        
        assert delete_response.status_code == 200
        
        # Test 6: Verify database deletion
        db_deleted = await test_db.fetchrow(
            "SELECT * FROM leagues WHERE id = $1",
            (league_id,)
        )
        assert db_deleted is None
 
# Cleanup - transaction rollback handled by fixture

REQ-TQF-003: End-to-End Testing

User Story: As a product manager, I want E2E tests that simulate real user workflows, so that I can verify the entire system works as expected.

Acceptance Criteria

  1. WHEN running E2E tests, THE Testing_Framework SHALL use Playwright for browser automation
  2. WHEN testing user flows, THE Testing_Framework SHALL cover critical paths (signup, document upload, contract generation)
  3. WHEN capturing failures, THE Testing_Framework SHALL save screenshots, videos, and network logs
  4. WHEN testing across browsers, THE Testing_Framework SHALL support Chrome, Firefox, Safari
  5. WHEN running in CI, THE Testing_Framework SHALL use headless mode for speed

Implementation Example (E2E - Playwright)

// clients/frontend/e2e/league-onboarding.spec.ts
import { test, expect } from '@playwright/test';
import { LeagueOnboardingPage } from './pages/LeagueOnboardingPage';
import { DashboardPage } from './pages/DashboardPage';
 
test.describe('League Onboarding E2E Flow', () => {
  test('Complete league onboarding journey', async ({ page }) => {
    const onboardingPage = new LeagueOnboardingPage(page);
    const dashboardPage = new DashboardPage(page);
 
    // Step 1: Navigate to registration
    await page.goto('/register');
    await expect(page).toHaveTitle(/Register/);
 
    // Step 2: Fill registration form
    await onboardingPage.fillRegistrationForm({
      email: 'testuser@example.com',
      password: 'SecurePass123!',
      leagueName: 'Test Integration League',
      sportDomain: 'team_player_actions',
      targetSportsbooks: [
        { id: 'draftkings', priority: 1 },
        { id: 'underdog', priority: 2 }
      ]
    });
 
    // Step 3: Complete registration
    await onboardingPage.submitRegistration();
    await expect(page).toHaveURL(/dashboard/);
 
    // Step 4: Verify dashboard
    await dashboardPage.verifyLeagueCreated('Test Integration League');
    await expect(dashboardPage.leagueCard).toBeVisible();
 
    // Step 5: Upload document
    await dashboardPage.uploadDocument('test-questionnaire.pdf');
    await expect(dashboardPage.successMessage).toBeVisible({ text: /uploaded/ });
 
    // Step 6: Verify compliance status
    await dashboardPage.verifyComplianceStatus('Test Integration League');
    await expect(dashboardPage.complianceScore).toBeVisible();
 
    // Step 7: Generate contract
    await dashboardPage.generateContract();
    await expect(dashboardPage.contractStatus).toBeVisible({ text: /generated/ });
  });
 
  test('Handle registration error scenarios', async ({ page }) => {
    const onboardingPage = new LeagueOnboardingPage(page);
 
    await page.goto('/register');
 
    // Test invalid email
    await onboardingPage.fillRegistrationForm({
      email: 'invalid-email',
      password: 'SecurePass123!',
      leagueName: 'Test League'
    });
    await onboardingPage.submitRegistration();
    await expect(onboardingPage.errorMessage).toBeVisible({ text: /email/ });
 
    // Test weak password
    await onboardingPage.fillRegistrationForm({
      email: 'valid@example.com',
      password: 'weak',
      leagueName: 'Test League'
    });
    await onboardingPage.submitRegistration();
    await expect(onboardingPage.errorMessage).toBeVisible({ text: /password/ });
  });
});

REQ-TQF-004: 6-Persona AI Testing Framework

User Story: As a quality engineer, I want AI-powered testing with multiple personas, so that I can evaluate the system from diverse user perspectives.

Acceptance Criteria

  1. WHEN evaluating features, THE AI_Personas SHALL include League Admin, Tech Evaluator, Business Partner, Sports Betting Expert, Data Scientist, and Newcomer personas
  2. WHEN running persona tests, THE Testing_Framework SHALL execute tests in parallel for efficiency
  3. WHEN generating reports, THE AI_Personas SHALL provide satisfaction scores (0-100) with detailed feedback
  4. WHEN identifying issues, THE AI_Personas SHALL categorize by severity (critical, high, medium, low)
  5. WHEN completing evaluation, THE Testing_Framework SHALL aggregate results into comprehensive reports

Implementation Example (AI Persona Evaluator)

"""
Base AI Persona class that uses schemas for structured evaluation.
All persona evaluations return validated SchematicEvaluationResult.
"""
from abc import ABC, abstractmethod
from typing import Dict, List, Any, Optional
from pydantic import BaseModel, Field, validator
from openai import AsyncOpenAI
from anthropic import AsyncAnthropic
 
# Import evaluation schemas from data-layer-registry
from apps.backend.schemas.evaluation import (
    EvaluationResultSchema,
    SatisfactionScoreSchema,
    IssueReportSchema,
    PersonaFeedbackSchema
)
 
 
class AIPersona(ABC):
    """Base class for AI testing personas"""
 
    def __init__(
        self,
        persona_name: str,
        persona_description: str,
        expertise_areas: List[str],
        ai_client: Optional[AsyncOpenAI | AsyncAnthropic] = None
    ):
        self.persona_name = persona_name
        self.persona_description = persona_description
        self.expertise_areas = expertise_areas
        self.ai_client = ai_client or AsyncOpenAI()
 
    @abstractmethod
    async def evaluate_feature(
        self,
        feature_name: str,
        feature_data: Dict[str, Any],
        evaluation_criteria: List[str]
    ) -> EvaluationResultSchema:
        """
        Evaluate a feature from persona's perspective.
        Returns validated EvaluationResultSchema from data-layer-registry.
        """
        pass
 
    async def _generate_evaluation(
        self,
        prompt: str,
        context: Dict[str, Any]
    ) -> PersonaFeedbackSchema:
        """Generate persona feedback using LLM"""
        system_prompt = f"""
        You are {self.persona_name}: {self.persona_description}
 
        Your expertise areas: {', '.join(self.expertise_areas)}
 
        Evaluate the feature and provide structured feedback in JSON format
        matching the PersonaFeedbackSchema:
        {{
            "satisfaction_score": 0-100,
            "strengths": ["list of strengths"],
            "weaknesses": ["list of weaknesses"],
            "suggestions": ["list of improvement suggestions"],
            "critical_issues": [
                {{
                    "severity": "critical|high|medium|low",
                    "category": "usability|performance|security|functionality",
                    "description": "issue description",
                    "suggested_fix": "how to fix"
                }}
            ],
            "overall_impression": "detailed feedback"
        }}
        """
        response = await self.ai_client.chat.completions.create(
            model="gpt-4-turbo-preview",
            messages=[
                {"role": "system", "content": system_prompt},
                {"role": "user", "content": prompt}
            ],
            response_format={"type": "json_object"},
            temperature=0.7
        )
 
        feedback_data = json.loads(response.choices[0].message.content)
 
        # Validate against schema
        return PersonaFeedbackSchema(**feedback_data)
 
 
class LeagueAdminPersona(AIPersona):
    """
    Persona: League Administrator
    Perspective: Non-technical league operations manager
    Focus: Ease of use, onboarding, partnership process
    """
    def __init__(self):
        super().__init__(
            persona_name="League Administrator",
            persona_description="A non-technical operations manager for a mid-sized sports league",
            expertise_areas=[
                "League operations",
                "Partnership management",
                "Document processing",
                "Non-technical workflows"
            ]
        )
 
    async def evaluate_feature(
        self,
        feature_name: str,
        feature_data: Dict[str, Any],
        evaluation_criteria: List[str]
    ) -> EvaluationResultSchema:
        """Evaluate from league admin perspective"""
 
        prompt = f"""
        Evaluate the '{feature_name}' feature as a league administrator.
 
        Feature Details:
        {json.dumps(feature_data, indent=2)}
 
        Evaluation Criteria:
        {chr(10).join(f"- {criterion}" for criterion in evaluation_criteria)}
 
        Focus on:
        1. How easy is it for non-technical users?
        2. Is the onboarding process clear?
        3. Can I complete tasks without technical help?
        4. Are error messages understandable?
        5. Is the partnership process transparent?
        """
        feedback = await self._generate_evaluation(prompt, feature_data)
 
        # Convert to full evaluation result
        return EvaluationResultSchema(
            persona_name=self.persona_name,
            feature_name=feature_name,
            satisfaction_score=SatisfactionScoreSchema(
                overall=feedback.satisfaction_score,
                usability=feedback.satisfaction_score,  # League admin focuses on usability
                functionality=feedback.satisfaction_score * 0.9,
                performance=feedback.satisfaction_score * 0.8
            ),
            strengths=feedback.strengths,
            weaknesses=feedback.weaknesses,
            suggestions=feedback.suggestions,
            critical_issues=feedback.critical_issues,
            overall_impression=feedback.overall_impression,
            timestamp=datetime.utcnow().isoformat()
        )
 
 
class TechEvaluatorPersona(AIPersona):
    """
    Persona: Technical Evaluator
    Perspective: Senior software engineer
    Focus: Code quality, architecture, performance, security
    """
    def __init__(self):
        super().__init__(
            persona_name="Technical Evaluator",
            persona_description="A senior software engineer with 10+ years experience",
            expertise_areas=[
                "Software architecture",
                "Code quality",
                "Performance optimization",
                "Security best practices",
                "API design"
            ]
        )
 
    async def evaluate_feature(
        self,
        feature_name: str,
        feature_data: Dict[str, Any],
        evaluation_criteria: List[str]
    ) -> EvaluationResultSchema:
        """Evaluate from technical perspective"""
 
        prompt = f"""
        Evaluate the '{feature_name}' feature as a senior software engineer.
 
        Feature Details:
        {json.dumps(feature_data, indent=2)}
 
        Evaluation Criteria:
        {chr(10).join(f"- {criterion}" for criterion in evaluation_criteria)}
 
        Focus on:
        1. Is the code well-architected and maintainable?
        2. Are there performance bottlenecks?
        3. Are security best practices followed?
        4. Is error handling comprehensive?
        5. Is the API design RESTful and intuitive?
        6. Are schemas properly validated?
        7. Is the code testable?
        """
        feedback = await self._generate_evaluation(prompt, feature_data)
 
        return EvaluationResultSchema(
            persona_name=self.persona_name,
            feature_name=feature_name,
            satisfaction_score=SatisfactionScoreSchema(
                overall=feedback.satisfaction_score,
                usability=feedback.satisfaction_score * 0.7,
                functionality=feedback.satisfaction_score,
                performance=feedback.satisfaction_score * 0.95
            ),
            strengths=feedback.strengths,
            weaknesses=feedback.weaknesses,
            suggestions=feedback.suggestions,
            critical_issues=feedback.critical_issues,
            overall_impression=feedback.overall_impression,
            timestamp=datetime.utcnow().isoformat()
        )

Running 6-Persona Evaluation Suite

"""
Orchestrates parallel execution of 6 AI persona evaluations.
Aggregates results into comprehensive quality report.
"""
import asyncio
from typing import List, Dict, Any
from concurrent.futures import ThreadPoolExecutor
 
from apps.backend.schemas.evaluation import (
    EvaluationResultSchema,
    AggregatedEvaluationSchema,
    QualityReportSchema
)
from tests.ai_personas.personas import (
    LeagueAdminPersona,
    TechEvaluatorPersona,
    BusinessPartnerPersona,
    SportsBettingExpertPersona,
    DataScientistPersona,
    NewcomerPersona
)
 
 
class PersonaEvaluationOrchestrator:
    """Orchestrates 6-persona AI evaluation"""
 
    def __init__(self):
        self.personas = [
            LeagueAdminPersona(),
            TechEvaluatorPersona(),
            BusinessPartnerPersona(),
            SportsBettingExpertPersona(),
            DataScientistPersona(),
            NewcomerPersona()
        ]
 
    async def evaluate_system(
        self,
        features: List[Dict[str, Any]],
        evaluation_criteria: List[str]
    ) -> QualityReportSchema:
        """
        Run comprehensive 6-persona evaluation in parallel.
        Returns aggregated QualityReportSchema.
        """
        all_evaluations: List[EvaluationResultSchema] = []
 
        # Run all persona evaluations in parallel
        tasks = []
        for feature in features:
            for persona in self.personas:
                task = persona.evaluate_feature(
                    feature_name=feature['name'],
                    feature_data=feature['data'],
                    evaluation_criteria=evaluation_criteria
                )
                tasks.append(task)
 
        # Execute in parallel with timeout
        evaluations = await asyncio.gather(*tasks, return_exceptions=True)
 
        # Filter out exceptions and collect valid evaluations
        for eval_result in evaluations:
            if isinstance(eval_result, EvaluationResultSchema):
                all_evaluations.append(eval_result)
            else:
                # Log exception
                print(f"Evaluation failed: {eval_result}")
 
        # Aggregate results
        return self._aggregate_evaluations(all_evaluations)
 
    def _aggregate_evaluations(
        self,
        evaluations: List[EvaluationResultSchema]
    ) -> QualityReportSchema:
        """Aggregate persona evaluations into quality report"""
 
        # Calculate average satisfaction scores
        avg_overall = sum(e.satisfaction_score.overall for e in evaluations) / len(evaluations)
        avg_usability = sum(e.satisfaction_score.usability for e in evaluations) / len(evaluations)
        avg_functionality = sum(e.satisfaction_score.functionality for e in evaluations) / len(evaluations)
        avg_performance = sum(e.satisfaction_score.performance for e in evaluations) / len(evaluations)
 
        # Collect all critical issues
        all_issues = []
        for evaluation in evaluations:
            all_issues.extend(evaluation.critical_issues)
 
        # Group issues by severity
        critical_issues = [i for i in all_issues if i.severity == "critical"]
        high_issues = [i for i in all_issues if i.severity == "high"]
 
        # Generate quality grade
        quality_grade = self._calculate_quality_grade(
            avg_overall,
            len(critical_issues),
            len(high_issues)
        )
 
        return QualityReportSchema(
            report_id=str(uuid.uuid4()),
            average_satisfaction=avg_overall,
            satisfaction_breakdown={
                "usability": avg_usability,
                "functionality": avg_functionality,
                "performance": avg_performance
            },
            total_evaluations=len(evaluations),
            personas_evaluated=[e.persona_name for e in evaluations],
            critical_issues_count=len(critical_issues),
            high_issues_count=len(high_issues),
            quality_grade=quality_grade,
            recommendations=self._generate_recommendations(evaluations),
            detailed_evaluations=evaluations,
            generated_at=datetime.utcnow().isoformat()
        )
 
    def _calculate_quality_grade(
        self,
        avg_score: float,
        critical_issues: int,
        high_issues: int
    ) -> str:
        """Calculate quality grade: A+, A, B+, B, C, D, F"""
 
        if critical_issues > 0:
            return "D" if critical_issues <= 2 else "F"
 
        if high_issues > 5:
            return "C"
 
        if avg_score >= 90:
            return "A+" if high_issues == 0 else "A"
        elif avg_score >= 80:
            return "B+" if high_issues <= 2 else "B"
        elif avg_score >= 70:
            return "C"
        else:
            return "D"

REQ-TQF-005: Performance Testing

User Story: As a DevOps engineer, I want performance testing tools, so that I can ensure the system meets performance requirements under load.

Acceptance Criteria

  1. WHEN load testing, THE Performance_Testing SHALL use Locust or k6 for API endpoints
  2. WHEN stress testing, THE Performance_Testing SHALL identify system breaking points
  3. WHEN measuring latency, THE Performance_Testing SHALL track p50, p95, p99 response times
  4. WHEN testing concurrency, THE Performance_Testing SHALL simulate 100+ concurrent users
  5. WHEN generating reports, THE Performance_Testing SHALL visualize metrics in Grafana dashboards

Implementation Example (Performance - Locust)

"""
Performance testing using Locust.
Tests backend API endpoints with realistic load patterns.
"""
from locust import HttpUser, task, between
import random
from datetime import datetime
 
# Import request/response schemas for type-safe testing
from apps.backend.schemas.league import LeagueAnalysisRequest
from apps.backend.schemas.document import DocumentUploadRequest
 
 
class LeagueManagementUser(HttpUser):
    """Simulates typical user behavior"""
 
    wait_time = between(1, 5)  # 1-5 seconds between requests
 
    def on_start(self):
        """Login and setup"""
        response = self.client.post("/api/auth/login", json={
            "email": "test@example.com",
            "password": "testpass123"
        })
        self.token = response.json()["access_token"]
        self.headers = {"Authorization": f"Bearer {self.token}"}
 
    @task(3)  # 30% of requests
    def view_dashboard(self):
        """Load league dashboard"""
        self.client.get("/api/leagues", headers=self.headers)
 
    @task(2)  # 20% of requests
    def analyze_league(self):
        """Trigger league analysis"""
        request = LeagueAnalysisRequest(
            league_name=f"Test League {random.randint(1, 100)}",
            website_url="https://example.com",
            contact_email="test@example.com"
        )
 
        with self.client.post(
            "/api/leagues/analyze",
            json=request.dict(),
            headers=self.headers,
            catch_response=True
        ) as response:
            if response.status_code == 200:
                # Verify response matches schema
                data = response.json()
                if "recommended_tier" in data and "partnership_score" in data:
                    response.success()
                else:
                    response.failure("Invalid response schema")
            else:
                response.failure(f"Failed with status {response.status_code}")
 
    @task(1)  # 10% of requests
    def upload_document(self):
        """Upload league questionnaire"""
        files = {
            "file": ("questionnaire.pdf", b"fake pdf content", "application/pdf")
        }
 
        self.client.post(
            "/api/documents/upload",
            files=files,
            headers=self.headers
        )
 
    @task(1)  # 10% of requests
    def search_leagues(self):
        """Search for leagues"""
        query = random.choice(["basketball", "football", "lacrosse", "hockey"])
        self.client.get(
            f"/api/leagues/search?q={query}",
            headers=self.headers
        )

REQ-TQF-006: Security Testing

User Story: As a security engineer, I want automated security testing, so that I can identify and fix vulnerabilities before production.

Acceptance Criteria

  1. WHEN scanning code, THE Security_Testing SHALL use SAST tools (Bandit, ESLint security plugins)
  2. WHEN testing dependencies, THE Security_Testing SHALL scan for known vulnerabilities (npm audit, Safety)
  3. WHEN testing APIs, THE Security_Testing SHALL perform OWASP Top 10 checks
  4. WHEN testing authentication, THE Security_Testing SHALL verify JWT validation and session management
  5. WHEN finding vulnerabilities, THE Security_Testing SHALL generate prioritized reports with remediation guidance

Implementation Example

# security/vulnerability/vulnerability_scanner.py
import subprocess
import json
from typing import Dict, List, Any
from datetime import datetime
 
class VulnerabilityScanner:
    """Automated vulnerability scanning"""
 
    def __init__(self, project_root: str):
        self.project_root = project_root
        self.scan_results = []
 
    async def scan_code_sast(self, target: str = "all") -> List[SecurityFinding]:
        """Run SAST code scanning"""
 
        findings = []
 
        # Python code (Bandit)
        if target in ["all", "python"]:
            try:
                result = subprocess.run(
                    ["bandit", "-r", f"{self.project_root}/apps/backend", "-f", "json", "-o", "-"],
                    capture_output=True,
                    text=True,
                    check=True
                )
                python_findings = json.loads(result.stdout)
                for issue in python_findings.get("results", []):
                    findings.append(SecurityFinding(
                        tool="bandit",
                        severity=issue["issue_severity"],
                        confidence=issue["issue_confidence"],
                        description=issue["issue_text"],
                        location=f"{self.project_root}/apps/backend/{issue['filename']}:{issue['line_number']}",
                        timestamp=datetime.utcnow()
                    ))
            except subprocess.CalledProcessError as e:
                logger.error("Bandit scan failed", error=str(e))
 
        # JavaScript/TypeScript (ESLint with security plugins)
        if target in ["all", "frontend"]:
            try:
                result = subprocess.run(
                    [
                        "npx", "eslint", "--ext", ".js,.ts,.tsx", 
                        "--format", "json",
                        f"{self.project_root}/clients/frontend/src"
                    ],
                    capture_output=True,
                    text=True,
                    check=True
                )
                js_findings = json.loads(result.stdout)
                for file_results in js_findings:
                    for issue in file_results["messages"]:
                        if issue["ruleId"] in ["security/detect-unsafe-regex", "security/detect-possible-timing-attacks"]:
                            findings.append(SecurityFinding(
                                tool="eslint-security",
                                severity=issue["severity"][0].upper(),
                                confidence="high",
                                description=issue["message"],
                                location=f"{self.project_root}/clients/frontend/src/{file_results['filePath']}:{issue['line']}",
                                timestamp=datetime.utcnow()
                            ))
            except subprocess.CalledProcessError as e:
                logger.error("ESLint security scan failed", error=str(e))
 
        return findings
 
    async def scan_dependencies(self) -> List[SecurityFinding]:
        """Scan dependencies for vulnerabilities"""
 
        findings = []
 
        # Python dependencies (Safety)
        try:
            result = subprocess.run(
                ["safety", "check", "--json"],
                capture_output=True,
                text=True,
                cwd=self.project_root,
                check=True
            )
            vuln_data = json.loads(result.stdout)
            for vuln in vuln_data:
                findings.append(SecurityFinding(
                    tool="safety",
                    severity=vuln["package"]["advisories"][0]["advisory"]["severity"],
                    confidence="high",
                    description=f"Dependency vulnerability: {vuln['package']['name']} {vuln['package']['version']} - {vuln['package']['advisories'][0]['advisory']['description']}",
                    location=f"{self.project_root}/pyproject.toml",
                    timestamp=datetime.utcnow()
                ))
        except subprocess.CalledProcessError as e:
            logger.error("Safety scan failed", error=str(e))
 
        # JavaScript dependencies (npm audit)
        try:
            result = subprocess.run(
                ["npm", "audit", "--json"],
                capture_output=True,
                text=True,
                cwd=f"{self.project_root}/clients/frontend",
                check=True
            )
            audit_data = json.loads(result.stdout)
            for vuln in audit_data.get("vulnerabilities", {}).values():
                if vuln["severity"] in ["high", "critical"]:
                    findings.append(SecurityFinding(
                        tool="npm-audit",
                        severity=vuln["severity"].upper(),
                        confidence="high",
                        description=f"Dependency vulnerability: {vuln['name']}@{vuln['version']} - {vuln['overview']}",
                        location=f"{self.project_root}/clients/frontend/package.json",
                        timestamp=datetime.utcnow()
                    ))
        except subprocess.CalledProcessError as e:
            logger.error("npm audit failed", error=str(e))
 
        return findings
 
    async def scan_containers(self) -> List[SecurityFinding]:
        """Scan Docker images for vulnerabilities"""
 
        findings = []
 
        # Run Trivy scan on all images
        try:
            result = subprocess.run(
                ["trivy", "image", "--format", "json", "--exit-code", "0", "--no-progress"],
                capture_output=True,
                text=True,
                cwd=self.project_root,
                check=True
            )
            trivy_results = json.loads(result.stdout)
            
            for result in trivy_results.get("Results", []):
                for vuln in result.get("Vulnerabilities", []):
                    if vuln["Severity"] in ["CRITICAL", "HIGH"]:
                        findings.append(SecurityFinding(
                            tool="trivy",
                            severity=vuln["Severity"],
                            confidence="high",
                            description=f"Container vulnerability: {vuln['VulnerabilityID']} - {vuln['Title']}",
                            location=f"Docker image: {result['Target']}",
                            timestamp=datetime.utcnow()
                        ))
        except subprocess.CalledProcessError as e:
            logger.error("Trivy scan failed", error=str(e))
 
        return findings
 
    async def run_owasp_zap_scan(self, target_url: str) -> List[SecurityFinding]:
        """Run OWASP ZAP dynamic analysis"""
 
        findings = []
 
        # Configure and run ZAP scan
        try:
            # Start ZAP in daemon mode (in production, use containerized ZAP)
            zap_config = {
                "target": target_url,
                "ajaxSpider": True,
                "context": "Production API",
                "attackStrength": "MEDIUM",
                "alertThreshold": "HIGH"
            }
 
            # Execute scan (simplified - in practice, use ZAP API)
            # result = await self._execute_zap_scan(zap_config)
 
            # Parse results
            # for alert in result.alerts:
            #     if alert.risk in ["High", "Medium"]:
            #         findings.append(SecurityFinding(...))
 
            pass  # Placeholder for ZAP integration
 
        except Exception as e:
            logger.error("OWASP ZAP scan failed", error=str(e))
 
        return findings
 
    async def generate_vulnerability_report(self, scan_results: List[SecurityFinding]) -> VulnerabilityReport:
        """Generate comprehensive vulnerability report"""
 
        # Categorize findings
        critical = [f for f in scan_results if f.severity == "CRITICAL"]
        high = [f for f in scan_results if f.severity == "HIGH"]
        medium = [f for f in scan_results if f.severity == "MEDIUM"]
        low = [f for f in scan_results if f.severity == "LOW"]
 
        # Generate remediation plan
        remediation_plan = await self._generate_remediation_plan(scan_results)
 
        return VulnerabilityReport(
            total_findings=len(scan_results),
            critical_count=len(critical),
            high_count=len(high),
            medium_count=len(medium),
            low_count=len(low),
            findings=scan_results,
            remediation_plan=remediation_plan,
            report_date=datetime.utcnow(),
            priority="immediate" if critical else "high"
        )

REQ-TQF-007: Test Data Management

User Story: As a tester, I want realistic test data generation, so that I can test with production-like scenarios.

Acceptance Criteria

  1. WHEN generating test data, THE Test_Data SHALL use Faker for synthetic data creation
  2. WHEN creating fixtures, THE Test_Data SHALL provide factory patterns for domain models
  3. WHEN seeding databases, THE Test_Data SHALL maintain referential integrity
  4. WHEN anonymizing data, THE Test_Data SHALL mask PII for compliance
  5. WHEN managing test data, THE Test_Data SHALL version fixtures with migrations

Implementation Example

# apps/backend/tests/fixtures/league_fixtures.py
import factory
from factory import fuzzy
from faker import Faker
from datetime import datetime, timedelta
from uuid import uuid4
 
from apps.backend.models.league import League
from apps.backend.models.user import User
from apps.backend.tests.fixtures.user_fixtures import user_factory
 
fake = Faker()
 
class LeagueFactory(factory.Factory):
    """Factory for League model with schema validation"""
 
    class Meta:
        model = League
 
    id = factory.LazyAttribute(lambda _: str(uuid4()))
    name = fuzzy.FuzzyText(length=20)
    sport = fuzzy.FuzzyChoice(choices=["Basketball", "Football", "Lacrosse", "Hockey"])
    region = fuzzy.FuzzyChoice(choices=["North America", "Europe", "Asia"])
    tier = fuzzy.FuzzyChoice(choices=["1.1", "1.2", "2.1", "2.2", "3.1", "3.2", "4.1", "4.2"])
    partnership_score = fuzzy.FuzzyFloat(low=0.0, high=100.0)
    created_at = factory.LazyAttribute(lambda _: datetime.utcnow())
    updated_at = factory.LazyAttribute(lambda _: datetime.utcnow())
 
    owner = factory.SubFactory(user_factory)
 
    @factory.post_generation
    def post_generation(self, create, extracted, **kwargs):
        """Post-generation hooks for complex relationships"""
        if create:
            # Ensure owner exists
            if not self.owner:
                self.owner = user_factory.create()
            
            # Validate tier format
            if self.tier not in ["1.1", "1.2", "2.1", "2.2", "3.1", "3.2", "4.1", "4.2"]:
                self.tier = "2.1"  # Default valid tier
 
    @classmethod
    def create_league_with_partnerships(cls, count: int = 3):
        """Create league with associated partnerships"""
        league = cls.create()
        
        # Create partnerships
        for _ in range(count):
            partnership = PartnershipFactory.create(league=league)
        
        return league
 
    @classmethod
    def create_realistic_league(cls, sport_domain: str = "team_player_actions"):
        """Create realistic league for given sport domain"""
        sport_choices = {
            "combat": ["Boxing", "MMA", "Wrestling"],
            "racing": ["Horse Racing", "Auto Racing", "Motorcycle Racing"],
            "action_sports": ["Skateboarding", "BMX", "Snowboarding"],
            "team_player_actions": ["Basketball", "Football", "Hockey"],
            "competitive_turn_taking": ["Chess", "Poker", "Esports"]
        }
        
        sport = random.choice(sport_choices.get(sport_domain, ["Basketball"]))
        
        return cls.create(
            name=f"{sport} Professional League",
            sport=sport,
            region=fake.country(),
            tier=random.choice(["2.1", "3.1", "4.1"]),
            partnership_score=random.uniform(50, 85)
        )

REQ-TQF-008: CI/CD Integration

User Story: As a DevOps engineer, I want automated testing in CI/CD pipelines, so that quality gates prevent buggy code from reaching production.

Acceptance Criteria

  1. WHEN code is pushed, THE CI_CD_Integration SHALL trigger automated test suites
  2. WHEN PRs are created, THE CI_CD_Integration SHALL run tests and report results
  3. WHEN deploying to staging, THE CI_CD_Integration SHALL run smoke tests
  4. WHEN releasing to production, THE CI_CD_Integration SHALL require all tests to pass
  5. WHEN tests fail, THE CI_CD_Integration SHALL block deployment and notify developers

Implementation Example (CI/CD - GitHub Actions)

name: Test Suite
 
on:
  push:
    branches: [ main, develop ]
  pull_request:
    branches: [ main, develop ]
 
env:
  PYTHON_VERSION: "3.11"
  NODE_VERSION: "20"
 
jobs:
  backend-tests:
    runs-on: ubuntu-latest
 
    services:
      postgres:
        image: postgres:15
        env:
          POSTGRES_PASSWORD: postgres
          POSTGRES_DB: test_db
        ports:
          - 5432:5432
 
      redis:
        image: redis:7
        ports:
          - 6379:6379
 
    steps:
      - uses: actions/checkout@v4
 
      - name: Set up Python
        uses: actions/setup-python@v5
        with:
          python-version: ${{ env.PYTHON_VERSION }}
 
      - name: Install dependencies
        run: |
          pip install -r apps/backend/requirements.txt
          pip install pytest pytest-asyncio pytest-cov
 
      - name: Run unit tests
        run: |
          cd apps/backend
          pytest tests/unit -v --cov=. --cov-report=xml
 
      - name: Run integration tests
        env:
          DATABASE_URL: postgresql://postgres:postgres@localhost:5432/test_db
          REDIS_URL: redis://localhost:6379
        run: |
          cd apps/backend
          pytest tests/integration -v
 
      - name: Upload coverage
        uses: codecov/codecov-action@v3
        with:
          file: ./apps/backend/coverage.xml
          flags: backend
 
  frontend-tests:
    runs-on: ubuntu-latest
 
    steps:
      - uses: actions/checkout@v4
 
      - name: Set up Node.js
        uses: actions/setup-node@v4
        with:
          node-version: ${{ env.NODE_VERSION }}
 
      - name: Install dependencies
        run: |
          cd clients/frontend
          npm ci
 
      - name: Run unit tests
        run: |
          cd clients/frontend
          npm run test:unit
 
      - name: Run component tests
        run: |
          cd clients/frontend
          npm run test:components
 
      - name: Build application
        run: |
          cd clients/frontend
          npm run build
 
  e2e-tests:
    runs-on: ubuntu-latest
    needs: [backend-tests, frontend-tests]
 
    steps:
      - uses: actions/checkout@v4
 
      - name: Set up Node.js
        uses: actions/setup-node@v4
        with:
          node-version: ${{ env.NODE_VERSION }}
 
      - name: Install Playwright
        run: |
          cd clients/frontend
          npm ci
          npx playwright install --with-deps
 
      - name: Run E2E tests
        run: |
          cd clients/frontend
          npm run test:e2e
 
      - name: Upload Playwright report
        if: always()
        uses: actions/upload-artifact@v3
        with:
          name: playwright-report
          path: clients/frontend/playwright-report/
 
  security-scan:
    runs-on: ubuntu-latest
 
    steps:
      - uses: actions/checkout@v4
 
      - name: Run Bandit (Python)
        run: |
          pip install bandit
          bandit -r apps/backend -f json -o bandit-report.json
 
      - name: Run npm audit (Frontend)
        run: |
          cd clients/frontend
          npm audit --audit-level=moderate
 
      - name: Run Snyk scan
        uses: snyk/actions/python@master
        env:
          SNYK_TOKEN: ${{ secrets.SNYK_TOKEN }}
        with:
          args: --severity-threshold=high
 
  quality-gate:
    runs-on: ubuntu-latest
    needs: [backend-tests, frontend-tests, e2e-tests, security-scan]
 
    steps:
      - name: Check quality metrics
        run: |
          echo "All tests passed!"
          echo "Quality gate: PASSED βœ…"

REQ-TQF-009: Test Orchestration

User Story: As a QA lead, I want parallel test execution, so that test suites complete quickly without bottlenecks.

Acceptance Criteria

  1. WHEN running test suites, THE Test_Orchestration SHALL execute tests in parallel across workers
  2. WHEN distributing tests, THE Test_Orchestration SHALL balance load across available resources
  3. WHEN collecting results, THE Test_Orchestration SHALL aggregate from all workers
  4. WHEN retrying flaky tests, THE Test_Orchestration SHALL automatically retry up to 3 times
  5. WHEN optimizing, THE Test_Orchestration SHALL prioritize fast-failing tests first

Implementation Example

# tests/orchestrator/test_orchestrator.py
import asyncio
from typing import List, Dict, Any
from concurrent.futures import ThreadPoolExecutor
import pytest
 
from tests.fixtures.test_fixtures import TestSuite, TestResult
 
class TestOrchestrator:
    """Parallel test execution orchestrator"""
 
    def __init__(self, max_workers: int = None):
        self.max_workers = max_workers or os.cpu_count()
        self.executor = ThreadPoolExecutor(max_workers=self.max_workers)
 
    async def run_parallel_tests(self, test_suites: List[TestSuite]) -> AggregatedTestResult:
        """Run test suites in parallel"""
 
        all_results = []
        failed_suites = []
 
        # Run each suite in parallel
        tasks = [
            self.executor.submit(self._run_test_suite, suite)
            for suite in test_suites
        ]
 
        # Collect results
        for future in asyncio.as_completed(tasks):
            try:
                result = future.result()
                all_results.extend(result.results)
                if result.failed_tests:
                    failed_suites.append(result.suite_name)
            except Exception as e:
                # Log suite failure
                all_results.append(TestResult(
                    test_id="suite_error",
                    suite_name="unknown",
                    status="error",
                    error=str(e),
                    duration=0
                ))
 
        # Retry flaky tests
        flaky_results = await self._retry_flaky_tests(all_results)
        all_results.extend(flaky_results)
 
        # Aggregate results
        aggregated = self._aggregate_results(all_results)
 
        return AggregatedTestResult(
            total_tests=len(all_results),
            passed_tests=len([r for r in all_results if r.status == "passed"]),
            failed_tests=len([r for r in all_results if r.status == "failed"]),
            error_tests=len([r for r in all_results if r.status == "error"]),
            duration=sum(r.duration for r in all_results),
            flaky_retries=len(flaky_results),
            suite_results=all_results
        )
 
    def _run_test_suite(self, suite: TestSuite) -> TestSuiteResult:
        """Run individual test suite"""
        results = []
        
        for test in suite.tests:
            start_time = time.time()
            try:
                outcome = test.run()
                duration = time.time() - start_time
                results.append(TestResult(
                    test_id=test.id,
                    suite_name=suite.name,
                    status="passed" if outcome else "failed",
                    duration=duration
                ))
            except Exception as e:
                duration = time.time() - start_time
                results.append(TestResult(
                    test_id=test.id,
                    suite_name=suite.name,
                    status="error",
                    error=str(e),
                    duration=duration
                ))
 
        return TestSuiteResult(
            suite_name=suite.name,
            results=results,
            failed_tests=[r for r in results if r.status != "passed"]
        )
 
    async def _retry_flaky_tests(self, results: List[TestResult]) -> List[TestResult]:
        """Retry flaky tests up to 3 times"""
        flaky_tests = [r for r in results if r.status == "failed" and "flaky" in r.tags]
        retry_results = []
 
        for test_result in flaky_tests:
            for attempt in range(3):
                try:
                    # Rerun test
                    outcome = test_result.test.rerun()
                    duration = 0  # Measure actual duration
                    retry_results.append(TestResult(
                        test_id=test_result.test_id,
                        suite_name=test_result.suite_name,
                        status="passed" if outcome else "failed",
                        duration=duration,
                        retry_attempt=attempt + 1
                    ))
                    break
                except Exception as e:
                    duration = 0
                    retry_results.append(TestResult(
                        test_id=test_result.test_id,
                        suite_name=test_result.suite_name,
                        status="error",
                        error=f"Retry {attempt + 1} failed: {str(e)}",
                        duration=duration,
                        retry_attempt=attempt + 1
                    ))
 
        return retry_results
 
    def _aggregate_results(self, results: List[TestResult]) -> AggregatedTestResult:
        """Aggregate test results"""
        passed = len([r for r in results if r.status == "passed"])
        failed = len([r for r in results if r.status == "failed"])
        errors = len([r for r in results if r.status == "error"])
 
        return AggregatedTestResult(
            total= len(results),
            passed=passed,
            failed=failed,
            errors=errors,
            pass_rate=passed / len(results) if results else 0,
            results=results
        )

REQ-TQF-010: Visual Regression Testing

User Story: As a frontend developer, I want visual regression testing, so that UI changes don't introduce unintended visual bugs.

Acceptance Criteria

  1. WHEN capturing screenshots, THE Testing_Framework SHALL use Percy or Chromatic
  2. WHEN comparing visuals, THE Testing_Framework SHALL detect pixel-level differences
  3. WHEN changes are detected, THE Testing_Framework SHALL require manual approval
  4. WHEN testing responsively, THE Testing_Framework SHALL capture multiple viewport sizes
  5. WHEN baseline updates occur, THE Testing_Framework SHALL version baseline images

Implementation Example

// clients/frontend/e2e/visual-regression.spec.ts
import { test, expect } from '@playwright/test';
import { defineConfig, devices } from '@playwright/test';
 
test.describe('Visual Regression Tests', () => {
  test.describe('League Dashboard', () => {
    test('Desktop view matches baseline', async ({ page }) => {
      await page.goto('/dashboard');
      
      // Wait for dynamic content to load
      await page.waitForLoadState('networkidle');
      
      // Capture screenshot of key sections
      await expect(page).toHaveScreenshot('dashboard-desktop.png', {
        fullPage: true,
        threshold: 0.1,  // 10% tolerance for minor changes
        mask: [
          // Mask dynamic elements
          page.locator('[data-testid="timestamp"]'),
          page.locator('[data-testid="user-menu"]')
        ]
      });
    });
 
    test('Mobile view matches baseline', async ({ page }) => {
      // Set mobile viewport
      await page.setViewportSize({ width: 375, height: 812 });
      
      await page.goto('/dashboard');
      await page.waitForLoadState('networkidle');
      
      await expect(page).toHaveScreenshot('dashboard-mobile.png', {
        fullPage: true,
        threshold: 0.1
      });
    });
 
    test('Dark mode matches baseline', async ({ page }) => {
      // Enable dark mode
      await page.evaluate(() => {
        localStorage.setItem('theme', 'dark');
        document.documentElement.classList.add('dark');
      });
      
      await page.goto('/dashboard');
      await page.waitForLoadState('networkidle');
      
      await expect(page).toHaveScreenshot('dashboard-dark.png', {
        fullPage: true,
        threshold: 0.1
      });
    });
  });
 
  test.describe('Compliance Dashboard', () => {
    test('Compliance cards render correctly', async ({ page }) => {
      await page.goto('/compliance');
      
      // Test different states
      const complianceStates = [
        { score: 100, status: 'complete' },
        { score: 75, status: 'in-progress' },
        { score: 25, status: 'needs-attention' }
      ];
 
      for (const state of complianceStates) {
        // Mock compliance data
        await page.evaluate((data) => {
          window.complianceData = data;
        }, state);
        
        // Reload to trigger re-render
        await page.reload();
        await page.waitForLoadState('networkidle');
        
        await expect(page.locator(`[data-score="${state.score}"]`)).toHaveScreenshot(
          `compliance-card-${state.status}.png`,
          { threshold: 0.05 }
        );
      }
    });
  });
});
 
// playwright.config.ts
import { defineConfig, devices } from '@playwright/test';
 
export default defineConfig({
  testDir: './e2e',
  fullyParallel: true,
  forbidOnly: !!process.env.CI,
  retries: process.env.CI ? 2 : 0,
  workers: process.env.CI ? 1 : undefined,
  reporter: [['html'], ['json', { outputFile: 'test-results.json' }]],
  use: {
    baseURL: 'http://localhost:3000',
    trace: 'on-first-retry',
    screenshot: 'only-on-failure',
    video: 'retain-on-failure',
  },
  projects: [
    {
      name: 'chromium',
      use: { ...devices['Desktop Chrome'] },
    },
    {
      name: 'firefox',
      use: { ...devices['Desktop Firefox'] },
    },
    {
      name: 'webkit',
      use: { ...devices['Desktop Safari'] },
    },
    {
      name: 'Mobile Chrome',
      use: { ...devices['Pixel 5'] },
    },
  ],
  webServer: {
    command: 'npm run start',
    url: 'http://localhost:3000',
    reuseExistingServer: !process.env.CI,
  },
});

REQ-TQF-011: API Contract Testing

User Story: As a backend developer, I want contract testing for APIs, so that breaking changes are detected early.

Acceptance Criteria

  1. WHEN defining contracts, THE Testing_Framework SHALL use OpenAPI schemas as source of truth
  2. WHEN validating requests, THE Testing_Framework SHALL verify request/response schemas
  3. WHEN versioning APIs, THE Testing_Framework SHALL test backward compatibility
  4. WHEN integrating with external APIs, THE Testing_Framework SHALL mock based on contracts
  5. WHEN contracts change, THE Testing_Framework SHALL generate consumer compatibility reports

Implementation Example

# tests/integration/test_api_contracts.py
import pytest
from pact import Consumer
 
from apps.backend.main import app
from apps.backend.tests.fixtures.contract_fixtures import (
    league_contract,
    partnership_contract
)
 
pact = Consumer('League API Consumer')
 
@pytest.fixture(scope="session")
def pact_broker():
    """Configure Pact broker"""
    return pact.setup_broker(
        broker_url='http://localhost:9292',
        provider_order={
            'league_service': 'http://localhost:8000'
        }
    )
 
class TestLeagueAPIContract:
    """API contract tests using Pact"""
 
    @pytest.mark.asyncio
    async def test_league_creation_contract(self, pact_broker):
        """
        Contract test for league creation API
        Verifies request/response schema against OpenAPI specification
        """
        # Define expected interactions
        league_contract.given('a league creation request with valid data').
        upon_receiving('a valid league creation request').
        with_request('POST', '/api/leagues', body={
            "name": "Contract Test League",
            "sport": "Basketball",
            "region": "North America",
            "contact_email": "contract@test.com"
        }).
        will_respond_with(
            201,
            headers={'Content-Type': 'application/json'},
            body={
                "id": "123e4567-e89b-12d3-a456-426614174000",
                "name": "Contract Test League",
                "sport": "Basketball",
                "region": "North America",
                "contact_email": "contract@test.com",
                "created_at": "2024-01-01T00:00:00Z"
            }
        )
 
        # Verify contract
        with league_contract:
            async with AsyncClient(app=app) as client:
                response = await client.post(
                    "/api/leagues",
                    json={
                        "name": "Contract Test League",
                        "sport": "Basketball",
                        "region": "North America",
                        "contact_email": "contract@test.com"
                    }
                )
                assert response.status_code == 201
                assert response.json()["name"] == "Contract Test League"
 
    @pytest.mark.asyncio
    async def test_backward_compatibility(self, pact_broker):
        """
        Test API backward compatibility
        Ensures new versions don't break existing consumers
        """
        # Test v1 contract still works with v2 implementation
        legacy_contract.given('legacy consumer using v1 schema').
        upon_receiving('v1 league creation request').
        with_request('POST', '/api/v1/leagues', body={
            "name": "Legacy Test League",
            "sport": "Football"
        }).
        will_respond_with(
            201,
            body={
                "id": "legacy-123",
                "name": "Legacy Test League",
                "sport": "Football"
            }
        )
 
        # Verify backward compatibility
        with legacy_contract:
            async with AsyncClient(app=app) as client:
                response = await client.post(
                    "/api/v1/leagues",
                    json={
                        "name": "Legacy Test League",
                        "sport": "Football"
                    }
                )
                assert response.status_code == 201
 
    @pytest.mark.asyncio
    async def test_external_api_contract(self, pact_broker):
        """
        Contract test for external sportsbook API
        Ensures integration works with expected contract
        """
        sportsbook_contract.given('sportsbook provides league data').
        upon_receiving('league data request').
        with_request('GET', '/api/external/sportsbooks/draftkings/leagues').
        will_respond_with(
            200,
            body={
                "leagues": [
                    {
                        "id": "draftkings-1",
                        "name": "Premier League",
                        "sport": "Soccer",
                        "active": true
                    }
                ]
            }
        )
 
        # Verify external contract
        with sportsbook_contract:
            async with AsyncClient(app=app) as client:
                response = await client.get("/api/external/sportsbooks/draftkings/leagues")
                assert response.status_code == 200
                assert "leagues" in response.json()

REQ-TQF-012: Test Coverage & Quality Metrics

User Story: As a tech lead, I want comprehensive quality metrics, so that I can track testing effectiveness and identify gaps.

Acceptance Criteria

  1. WHEN measuring coverage, THE Quality_Metrics SHALL track line, branch, and function coverage
  2. WHEN setting thresholds, THE Quality_Metrics SHALL enforce minimum 80% code coverage
  3. WHEN visualizing trends, THE Quality_Metrics SHALL show coverage over time
  4. WHEN analyzing quality, THE Quality_Metrics SHALL track test execution time trends
  5. WHEN reporting, THE Quality_Metrics SHALL integrate with SonarQube or CodeClimate

Implementation Example

# tests/metrics/quality_metrics.py
import pytest
from datetime import datetime, timedelta
from typing import Dict, List, Any
 
from apps.backend.services.quality import QualityMetricsService
from apps.backend.schemas.quality import QualityReportSchema, CoverageMetricsSchema
 
class TestQualityMetrics:
    """Test quality metrics collection and reporting"""
 
    @pytest.fixture
    def metrics_service(self):
        return QualityMetricsService()
 
    @pytest.mark.asyncio
    async def test_coverage_metrics(self, metrics_service):
        """Test coverage metrics calculation"""
        
        # Mock coverage data
        coverage_data = {
            "backend": {
                "line_coverage": 85.5,
                "branch_coverage": 78.2,
                "function_coverage": 92.1
            },
            "frontend": {
                "line_coverage": 76.8,
                "branch_coverage": 65.4,
                "function_coverage": 88.7
            }
        }
 
        # Calculate metrics
        report = await metrics_service.calculate_coverage_metrics(coverage_data)
 
        # Validate schema
        assert isinstance(report, QualityReportSchema)
        assert report.total_coverage > 80.0  # Overall threshold
        assert report.backend_coverage.line_coverage == 85.5
        assert report.frontend_coverage.line_coverage == 76.8
 
        # Test threshold enforcement
        assert report.coverage_status == "passing"  # Should pass
        assert report.threshold_met is True
 
    @pytest.mark.asyncio
    async def test_quality_trends(self, metrics_service):
        """Test quality trends analysis"""
 
        # Mock historical data
        historical_data = [
            {
                "date": datetime.utcnow() - timedelta(days=30),
                "backend_coverage": 82.1,
                "frontend_coverage": 74.5,
                "test_execution_time": 180.0  # seconds
            },
            {
                "date": datetime.utcnow() - timedelta(days=15),
                "backend_coverage": 84.3,
                "frontend_coverage": 76.2,
                "test_execution_time": 165.0
            },
            {
                "date": datetime.utcnow(),
                "backend_coverage": 85.5,
                "frontend_coverage": 78.9,
                "test_execution_time": 150.0
            }
        ]
 
        # Analyze trends
        trends = await metrics_service.analyze_quality_trends(historical_data)
 
        # Validate trends
        assert trends.coverage_trend == "improving"
        assert trends.execution_time_trend == "improving"
        assert trends.overall_quality_trend == "positive"
 
        # Test visualization data
        assert len(trends.coverage_history) == 3
        assert trends.coverage_history[0]["date"] == historical_data[0]["date"].isoformat()
 
    @pytest.mark.asyncio
    async def test_sonarqube_integration(self, metrics_service):
        """Test SonarQube integration"""
 
        # Mock SonarQube data
        sonarqube_data = {
            "measures": [
                {
                    "metric": "coverage",
                    "value": "85.5"
                },
                {
                    "metric": "duplicated_lines_density",
                    "value": "2.1"
                },
                {
                    "metric": "bugs",
                    "value": "3"
                },
                {
                    "metric": "vulnerabilities",
                    "value": "1"
                },
                {
                    "metric": "code_smells",
                    "value": "15"
                }
            ]
        }
 
        # Process SonarQube data
        quality_score = await metrics_service.process_sonarqube_data(sonarqube_data)
 
        # Validate quality score
        assert quality_score.overall_score > 80
        assert quality_score.quality_gate_status == "PASS"
        assert len(quality_score.issues) == 19  # 3 bugs + 1 vuln + 15 smells
        assert quality_score.security_rating == "A"  # Based on low vulnerabilities
 
    @pytest.mark.asyncio
    async def test_quality_gate_enforcement(self, metrics_service):
        """Test quality gate enforcement in CI/CD"""
 
        # Mock failing metrics
        failing_metrics = {
            "coverage": 75.0,  # Below 80% threshold
            "bugs": 10,
            "vulnerabilities": 5,
            "code_smells": 50
        }
 
        # Test gate failure
        gate_result = await metrics_service.enforce_quality_gate(failing_metrics)
 
        assert gate_result.passed is False
        assert "coverage" in gate_result.failed_checks
        assert "security" in gate_result.failed_checks
 
        # Mock passing metrics
        passing_metrics = {
            "coverage": 85.0,
            "bugs": 2,
            "vulnerabilities": 0,
            "code_smells": 10
        }
 
        # Test gate pass
        gate_result = await metrics_service.enforce_quality_gate(passing_metrics)
 
        assert gate_result.passed is True
        assert len(gate_result.failed_checks) == 0

REQ-TQF-013: Chaos Engineering & Resilience Testing

User Story: As a reliability engineer, I want chaos testing, so that I can verify system resilience under failure conditions.

Acceptance Criteria

  1. WHEN testing resilience, THE Testing_Framework SHALL simulate network failures and latency
  2. WHEN injecting faults, THE Testing_Framework SHALL test database connection failures
  3. WHEN testing recovery, THE Testing_Framework SHALL verify circuit breaker behavior
  4. WHEN monitoring, THE Testing_Framework SHALL track system recovery time
  5. WHEN documenting, THE Testing_Framework SHALL produce resilience test reports

Implementation Example

# tests/chaos/test_resilience.py
import pytest
import asyncio
from unittest.mock import patch, AsyncMock
 
from apps.backend.services.resilience import ResilienceTester
from apps.backend.schemas.resilience import ResilienceTestResult
 
class TestChaosEngineering:
    """Chaos engineering and resilience testing"""
 
    @pytest.fixture
    def resilience_tester(self):
        return ResilienceTester()
 
    @pytest.mark.asyncio
    async def test_network_latency_injection(self, resilience_tester):
        """Test system behavior under network latency"""
 
        # Mock network delay
        with patch('httpx.AsyncClient', autospec=True) as mock_client:
            # Simulate 500ms latency
            mock_client.return_value.get = AsyncMock()
            mock_client.return_value.get.side_effect = self._inject_latency
 
            # Run test with latency
            result = await resilience_tester.test_network_latency(
                endpoint="/api/leagues",
                expected_status=200,
                max_latency_ms=500
            )
 
            # Validate resilience
            assert result.system_behaved_normally is True
            assert result.recovery_time_ms < 2000
            assert result.circuit_breaker_triggered is False
 
    @pytest.mark.asyncio
    async def test_database_failure_injection(self, resilience_tester):
        """Test database connection failures"""
 
        # Mock database failure
        with patch('apps.backend.database.connection', autospec=True) as mock_db:
            # Simulate connection failure
            mock_db.execute.side_effect = ConnectionError("Database unavailable")
 
            # Run test
            result = await resilience_tester.test_database_failure(
                operation="query_leagues",
                retry_attempts=3,
                fallback_strategy="cache"
            )
 
            # Validate fallback behavior
            assert result.fallback_used is True
            assert result.recovery_strategy_applied is True
            assert "cache" in result.fallback_strategy
 
    @pytest.mark.asyncio
    async def test_circuit_breaker_behavior(self, resilience_tester):
        """Test circuit breaker under failure conditions"""
 
        # Mock repeated failures
        failure_count = 5
        with patch('apps.backend.services.external_api', autospec=True) as mock_api:
            # Simulate 5 consecutive failures
            mock_api.call.side_effect = [Exception() for _ in range(failure_count)] + [AsyncMock()]
 
            # Run test
            result = await resilience_tester.test_circuit_breaker(
                service="external_api",
                failure_threshold=3,
                timeout_duration=30  # seconds
            )
 
            # Validate circuit breaker opened
            assert result.circuit_breaker_opened is True
            assert result.failure_threshold_reached is True
            assert result.open_duration_seconds == 30
 
            # Validate recovery
            assert result.recovery_successful is True
            assert result.half_open_state_tested is True
 
    def _inject_latency(self, *args, **kwargs):
        """Mock function with injected latency"""
        import asyncio
        asyncio.sleep(0.5)  # 500ms delay
        return AsyncMock()
 
    async def _simulate_database_recovery(self, tester):
        """Helper to test database recovery"""
        pass

REQ-TQF-014: Accessibility Testing

User Story: As an accessibility specialist, I want automated a11y testing, so that the application meets WCAG 2.1 AA standards.

Acceptance Criteria

  1. WHEN scanning pages, THE Testing_Framework SHALL use axe-core for accessibility checks
  2. WHEN testing keyboard navigation, THE Testing_Framework SHALL verify all interactive elements are accessible
  3. WHEN checking contrast, THE Testing_Framework SHALL verify WCAG color contrast ratios
  4. WHEN testing screen readers, THE Testing_Framework SHALL validate ARIA labels
  5. WHEN reporting, THE Testing_Framework SHALL categorize issues by severity and provide remediation guidance

Implementation Example

// clients/frontend/e2e/accessibility.spec.ts
import { test, expect } from '@playwright/test';
import AxeBuilder from '@axe-core/playwright';
 
test.describe('Accessibility Testing', () => {
  test('Dashboard is WCAG 2.1 AA compliant', async ({ page }) => {
    await page.goto('/dashboard');
 
    // Wait for content to load
    await page.waitForLoadState('networkidle');
 
    // Run axe-core accessibility scan
    const accessibilityScanResults = await new AxeBuilder({ page })
      .withTags(['wcag2a', 'wcag2aa'])
      .analyze();
 
    // Assert no violations
    expect(accessibilityScanResults.violations).toEqual([]);
 
    // Check specific WCAG criteria
    expect(accessibilityScanResults.passes.length).toBeGreaterThan(20);
  });
 
  test('Keyboard navigation works correctly', async ({ page }) => {
    await page.goto('/dashboard');
 
    // Test tab navigation
    await page.keyboard.press('Tab');
    await expect(page.locator('body')).toBeFocused();  // Initial focus
 
    // Navigate through interactive elements
    const interactiveElements = page.locator('button, a, input, select');
    const elementCount = await interactiveElements.count();
 
    for (let i = 0; i < elementCount; i++) {
      await page.keyboard.press('Tab');
      
      // Verify focus indicator is visible
      await expect(page.locator(':focus-visible')).toBeVisible();
      
      // Test Enter key activation for buttons
      const currentElement = await interactiveElements.nth(i);
      if (await currentElement.isVisible() && await currentElement.getAttribute('role') === 'button') {
        await page.keyboard.press('Enter');
        await expect(currentElement).toBeVisible();  // Element should respond
      }
    }
 
    // Test skip links
    await page.keyboard.press('Tab');
    if (await page.locator('[data-skip-link]').isVisible()) {
      await page.keyboard.press('Enter');
      await expect(page.locator('main')).toBeFocused();  // Should jump to main content
    }
  });
 
  test('Color contrast meets WCAG AA standards', async ({ page }) => {
    await page.goto('/dashboard');
 
    // Check color contrast using axe-core
    const contrastResults = await new AxeBuilder({ page })
      .withTags(['color-contrast'])
      .analyze();
 
    // Ensure no contrast violations
    const contrastViolations = contrastResults.violations.filter(v => 
      v.id === 'color-contrast'
    );
    expect(contrastViolations).toEqual([]);
 
    // Manual contrast checks for critical elements
    const primaryButtons = page.locator('button[data-variant="primary"]');
    const buttonCount = await primaryButtons.count();
 
    for (let i = 0; i < buttonCount; i++) {
      const button = primaryButtons.nth(i);
      const bgColor = await button.evaluate(el => getComputedStyle(el).backgroundColor);
      const textColor = await button.evaluate(el => getComputedStyle(el).color);
      
      // Verify minimum contrast ratio 4.5:1 for AA
      const contrastRatio = await calculateContrastRatio(bgColor, textColor);
      expect(contrastRatio).toBeGreaterThan(4.5);
    }
  });
 
  test('ARIA labels and screen reader support', async ({ page }) => {
    await page.goto('/dashboard');
 
    // Check ARIA labels on form elements
    const formElements = page.locator('input, select, textarea');
    const elementCount = await formElements.count();
 
    for (let i = 0; i < elementCount; i++) {
      const element = formElements.nth(i);
      const ariaLabel = await element.getAttribute('aria-label');
      const labelId = await element.getAttribute('aria-labelledby');
      
      // Element must have either aria-label or aria-labelledby
      expect(ariaLabel || labelId).toBeTruthy();
      
      if (labelId) {
        const label = page.locator(`#${labelId}`);
        await expect(label).toBeVisible();
      }
    }
 
    // Check landmark roles
    const landmarks = await page.$$eval('[role="main"], [role="navigation"], [role="banner"], [role="contentinfo"]', elements => 
      elements.length
    );
    expect(landmarks).toBeGreaterThan(0);  // At least one landmark
 
    // Check heading structure
    const headings = await page.$$eval('h1, h2, h3, h4, h5, h6', elements => 
      elements.map(el => ({ tag: el.tagName, text: el.textContent?.trim() }))
    );
    expect(headings.length).toBeGreaterThan(0);
    expect(headings[0].tag).toBe('h1');  // Page should have H1
  });
});
 
// Helper function for contrast ratio calculation
async function calculateContrastRatio(bgColor: string, textColor: string): Promise<number> {
  // Implement WCAG contrast ratio calculation
  // This is a simplified version - in practice, use a proper color library
  const getLuminance = (color: string) => {
    // Parse RGB values and calculate relative luminance
    const rgb = color.match(/\d+/g)?.map(Number) || [0, 0, 0];
    return (0.2126 * rgb[0] + 0.7152 * rgb[1] + 0.0722 * rgb[2]) / 255;
  };
 
  const bgLuminance = getLuminance(bgColor);
  const textLuminance = getLuminance(textColor);
 
  const lighter = Math.max(bgLuminance, textLuminance);
  const darker = Math.min(bgLuminance, textLuminance);
 
  return (lighter + 0.05) / (darker + 0.05);
}

REQ-TQF-015: Test Environment Management

User Story: As a QA engineer, I want isolated test environments, so that tests don't interfere with each other or production.

Acceptance Criteria

  1. WHEN running tests, THE Testing_Framework SHALL use isolated Docker containers
  2. WHEN provisioning, THE Testing_Framework SHALL spin up test databases automatically
  3. WHEN cleaning up, THE Testing_Framework SHALL tear down environments after test completion
  4. WHEN seeding data, THE Testing_Framework SHALL provide environment-specific fixtures
  5. WHEN managing secrets, THE Testing_Framework SHALL use test-specific credentials

Implementation Example (Docker Test Environment)

# docker-compose.test.yml
version: '3.11'
 
services:
  test-db:
    image: postgres:15-alpine
    environment:
      POSTGRES_USER: test
      POSTGRES_PASSWORD: test
      POSTGRES_DB: test_db
    ports:
      - "5433:5432"
    healthcheck:
      test: ["CMD-SHELL", "pg_isready -U test -d test_db"]
      interval: 10s
      timeout: 5s
      retries: 5
 
  test-redis:
    image: redis:7-alpine
    ports:
      - "6380:6379"
    healthcheck:
      test: ["CMD", "redis-cli", "ping"]
      interval: 10s
      timeout: 5s
      retries: 5
 
  test-backend:
    build:
      context: ./apps/backend
      dockerfile: Dockerfile.test
    depends_on:
      test-db:
        condition: service_healthy
      test-redis:
        condition: service_healthy
    environment:
      DATABASE_URL: postgresql://test:test@test-db:5432/test_db
      REDIS_URL: redis://test-redis:6379
      TEST_MODE: true
    command: pytest tests/ -v --cov=apps/backend --cov-report=xml
    networks:
      - test-network
 
  test-frontend:
    build:
      context: ./clients/frontend
      dockerfile: Dockerfile.test
    depends_on:
      - test-backend
    environment:
      NEXT_PUBLIC_API_URL: http://test-backend:8000
    command: npm run test:e2e
    networks:
      - test-network
 
networks:
  test-network:
    driver: bridge
 
volumes:
  test-db-data:

Testing Strategy

Test Pyramid

         /\
        /  \      E2E Tests (Playwright)
       /----\     5% - Critical user flows
      /      \
     /--------\   Integration Tests
    /          \  25% - Component interactions
   /------------\
  /--------------\ Unit Tests
 /________________\ 70% - Individual functions/components

Coverage Targets

LayerTargetMeasured By
Backend Unit80%+Coverage.py
Frontend Unit75%+c8
Integration60%+Combined
E2ECritical PathsPlaywright

Test Execution Times

  • Unit Tests: < 5 minutes
  • Integration Tests: < 10 minutes
  • E2E Tests: < 15 minutes
  • Performance Tests: 30-60 minutes
  • Security Scans: 5-10 minutes

Performance Optimization

Parallel Test Execution

# pytest-xdist for parallel execution
pytest -n auto  # Auto-detect CPU cores
pytest -n 8     # Use 8 workers

Test Caching

# Cache expensive fixtures
@pytest.fixture(scope="session")
def ai_client():
    """Reuse AI client across all tests"""
    return AsyncOpenAI(api_key=os.getenv("OPENAI_API_KEY"))

Security Considerations

  • βœ… Test Data Sanitization: No production data in tests
  • βœ… Secrets Management: Use environment variables, never commit secrets
  • βœ… Isolation: Each test runs in isolated environment
  • βœ… Access Control: Test accounts have limited permissions
  • βœ… Vulnerability Scanning: Automated dependency scanning in CI

Deployment Configuration

Docker Test Environment

# docker-compose.test.yml
version: '3.9'
 
services:
  test-db:
    image: postgres:15
    environment:
      POSTGRES_USER: test
      POSTGRES_PASSWORD: test
      POSTGRES_DB: test_db
    ports:
      - "5433:5432"
 
  test-redis:
    image: redis:7
    ports:
      - "6380:6379"
 
  test-backend:
    build:
      context: ./apps/backend
      dockerfile: Dockerfile.test
    depends_on:
      - test-db
      - test-redis
    environment:
      DATABASE_URL: postgresql://test:test@test-db:5432/test_db
      REDIS_URL: redis://test-redis:6379
    command: pytest tests/ -v

Revision History

  • v1.0 (2025-10-27): Initial Testing & QA Framework design with schema integration

This guide provides a complete overview of the Testing & QA Framework, detailing each requirement, implementation examples, and integration points to ensure successful deployment and operation of this critical quality assurance infrastructure.

Platform

Documentation

Community

Support

partnership@altsportsdata.comdev@altsportsleagues.ai

2025 Β© AltSportsLeagues.ai. Powered by AI-driven sports business intelligence.

πŸ€– AI-Enhancedβ€’πŸ“Š Data-Drivenβ€’βš‘ Real-Time