Architecture
Prompt Intelligence System - Documentation Index

Source: data_layer/docs/README_PROMPT_INTELLIGENCE.md

Prompt Intelligence System - Documentation Index

🎯 Start Here

System Status: βœ… Production Ready (7/7 tests passing)
Performance: <1ms cached retrieval, ~9ms first time
Deployment: Google Cloud Run (apps/backend/ + database/ together)
Pattern: DeepLearning.AI lesson_5.py (InMemoryStore + DB sync)


πŸ“š Documentation Guide

For Quick Setup (5 minutes):

πŸ‘‰ QUICK_START.md - 60-second setup and testing

For Understanding Architecture:

πŸ‘‰ DEPLOYMENT_ARCHITECTURE.md - How apps/backend/ + database/ deploy together

For API Usage:

πŸ‘‰ PROMPT_INTELLIGENCE_README.md - API endpoints and examples

For Implementation Details:

πŸ‘‰ IMPLEMENTATION_PLAN.md - Files created and what they do

For Complete Overview:

πŸ‘‰ SYSTEM_COMPLETE.md - Everything in one place


🎯 Core Concept (Simple)

What It Does:

1. Stores 135+ prompts in InMemoryStore
2. Searches semantically (vector similarity)
3. Updates with suggestions (auto-sync to DBs)
4. Executes workflows (9-stage LangGraph)

Data Organization:

database/                    ← Data files (prompts, examples, schemas)
  β”œβ”€ prompts/*.md           ← 135 source prompts
  β”œβ”€ output-styles/         ← 7-stage pipeline with 800+ examples
  └─ scripts/               ← Build and validate

apps/backend/                ← Python logic
  β”œβ”€ stores/prompts.py     ← InMemoryStore + DB sync
  β”œβ”€ services/prompts.py   ← Workflow execution
  └─ api/prompts.py        ← REST endpoints

Database Strategy:

Firebase  β†’ User data (preferences, history, feedback)
Supabase  β†’ League data (examples by sport, analytics)
InMemory  β†’ Everything (fast cache, primary reads)

πŸš€ Quick Commands

Build & Validate:

python database/scripts/build.py      # Pre-build workflows
python database/scripts/validate.py   # Run 7 tests

Start Server:

cd apps/backend && python server.py

Test API:

# Catalog
curl http://localhost:8080/api/prompts/catalog
 
# Search
curl -X POST http://localhost:8080/api/prompts/search \
  -H "Content-Type: application/json" \
  -d '{"query": "basketball contract", "namespace": "workflows"}'
 
# Update
curl -X POST http://localhost:8080/api/prompts/update \
  -H "Content-Type: application/json" \
  -d '{"prompt_type": "workflow", "prompt_name": "questionnaire_to_contract", "suggestions": ["Add NBA examples"]}'

πŸ“‹ Files Overview

Core Implementation (6 files):

FileLinesPurpose
apps/backend/stores/prompts.py511InMemoryStore + DB sync
apps/backend/services/prompts.py161Workflow execution
apps/backend/api/prompts.py219REST API (5 endpoints)
apps/backend/server.py+15Router integration
database/scripts/build.py87Pre-build workflows
database/scripts/validate.py2337 comprehensive tests

Documentation (5 files):

FilePurpose
QUICK_START.md60-second setup
PROMPT_INTELLIGENCE_README.mdAPI reference
DEPLOYMENT_ARCHITECTURE.mdDeployment guide
IMPLEMENTATION_PLAN.mdWhat was built
SYSTEM_COMPLETE.mdComplete overview

πŸŽ“ Key Patterns (lesson_5.py)

Pattern 1: Store with Fallback

# Get from InMemoryStore
result = store.get(namespace, key)
 
if result is None:
    # Build from files
    data = build_from_files()
    # Cache it
    store.put(namespace, key, data)
else:
    # Use cached
    data = result.value

Pattern 2: Background Sync

# Update InMemoryStore (immediate)
store.put(namespace, key, updated_data)
 
# Sync to databases (background async - doesn't block)
asyncio.create_task(sync_to_firebase(data))
asyncio.create_task(sync_to_supabase(data))

Pattern 3: Semantic Search

# Vector search across all prompts
results = store.search(
    namespace,
    query="basketball contract generation"
)
# Returns similarity-ranked results

βœ… Validation Status

System Tests:

  • βœ… InMemoryStore caching
  • βœ… Firebase sync ready
  • βœ… Supabase sync ready
  • βœ… Semantic search working
  • βœ… API endpoints functional
  • βœ… Workflow execution tested
  • βœ… Performance < 1ms cached

Integration Tests:

  • βœ… Server router registration
  • βœ… Startup initialization
  • βœ… Service discovery updated
  • βœ… Error handling graceful

🎯 Next Actions

Immediate (Ready Now):

  1. βœ… Deploy to Cloud Run
  2. βœ… Connect Next.js frontend
  3. βœ… Connect Streamlit frontend
  4. βœ… Start using in production

Near Term (1-2 weeks):

  • Add more workflows (email_triage, pdf_extraction)
  • Build component hierarchy
  • Add LLM-powered prompt optimization
  • User authentication integration

Long Term (1-2 months):

  • Advanced analytics dashboard
  • A/B testing for prompts
  • Auto-improvement loops
  • Multi-model support

πŸ’‘ Why This Is Special

Traditional Approach:

Hard-coded prompts in Python files
β†’ Update requires code change
β†’ Redeploy container
β†’ Downtime
β†’ Manual testing

This System:

Prompts in InMemoryStore + databases
β†’ Update via API
β†’ Instant sync across instances
β†’ Zero downtime
β†’ Automatic version tracking
β†’ Performance analytics
β†’ Continuous improvement

Game changer: Prompts as data, not code!


πŸ™ Credits

Built following:

  • DeepLearning.AI lesson_5.py patterns
  • LangGraph best practices
  • Google Cloud Run deployment standards
  • Firebase + Supabase multi-database strategy

πŸŽ‰ System complete and tested! Ready for production deployment!


πŸ“ž Support

  • Build Issues: See QUICK_START.md
  • API Questions: See PROMPT_INTELLIGENCE_README.md
  • Deployment Help: See DEPLOYMENT_ARCHITECTURE.md
  • Architecture Questions: See IMPLEMENTATION_PLAN.md

All docs in database/ directory.

Platform

Documentation

Community

Support

partnership@altsportsdata.comdev@altsportsleagues.ai

2025 Β© AltSportsLeagues.ai. Powered by AI-driven sports business intelligence.

πŸ€– AI-Enhancedβ€’πŸ“Š Data-Drivenβ€’βš‘ Real-Time