SportsIntelligenceRequest
Request model for sports intelligence chat
Properties
| Property | Type | Required | Description |
|---|---|---|---|
query | string | β Yes | User's sports-related query |
user_id | string | β Yes | User ID for credit tracking |
context | object | β No | Additional context |
sport | object | β No | Current sport context |
league | object | β No | Current league context |
deep_search_enabled | object | β No | Enable deep search |
think_enabled | object | β No | Enable step-by-step thinking |
Example
{
"query": "example",
"user_id": "example",
"context": {},
"sport": {},
"league": {},
"deep_search_enabled": {},
"think_enabled": {}
}Used In
Code Examples
TypeScript
interface SportsIntelligenceRequest {
query: string;
user_id: string;
context?: any;
sport?: any;
league?: any;
deep_search_enabled?: any;
think_enabled?: any;
}
// Usage example
const data: SportsIntelligenceRequest = {
"query": "example",
"user_id": "example",
"context": {},
"sport": {},
"league": {},
"deep_search_enabled": {},
"think_enabled": {}
};Python
from data_layer.schemas import SportsIntelligenceRequest
# Create instance
data = SportsIntelligenceRequest(
# Add your field values here
)cURL
curl -X POST "https://altsportsleagues-backend-2qcdjegnaa-uc.a.run.app/api/endpoint" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer YOUR_API_KEY" \
-d '{ "query": "example", "user_id": "example", "context": {}, "sport": {}, "league": {}, "deep_search_enabled": {}, "think_enabled": {} }'Validation Rules
Required Fields: query, user_id
Additional Information
- Type: object
- Source: Generated from Pydantic models in
data_layer/schemas/ - Auto-validated: All fields are validated by FastAPI
This documentation is auto-generated from the OpenAPI specification.