Architecture
Technical Architecture

AltSportsLeagues.ai Technical Architecture

System Overview

AltSportsLeagues.ai is a cloud-native, AI-powered sports intelligence platform built on a dual-database architecture combining Supabase for operational data and Firebase for scalable analytics. The system employs Claude.ai-inspired agent orchestration patterns and retrieval-first architecture principles to deliver intelligent insights for alternative sports leagues.

Core Architecture Principles

Retrieval-First Design

Following Claude.ai's "Retrieval Over Generation" philosophy:

interface RetrievalFirstArchitecture {
  // Prioritize finding existing solutions over creating new ones
  pattern_recognition: {
    similarity_search: VectorSimilarity;
    template_matching: TemplateEngine;
    composition_engine: ComponentAssembler;
  };
 
  // Minimize AI generation, maximize reuse
  generation_minimization: {
    component_reuse: ComponentLibrary;
    pattern_application: PatternMatcher;
    incremental_building: IncrementalAssembler;
  };
 
  // Continuous learning from successful implementations
  learning_loop: {
    success_pattern_storage: PatternStore;
    feedback_integration: FeedbackEngine;
    model_refinement: ModelUpdater;
  };
}

Agent Orchestration Patterns

Multi-agent system inspired by Claude.ai's collaborative intelligence:

class AgentOrchestrator {
  private agents = {
    business_analyst: new BusinessAnalystAgent(),
    technical_architect: new TechnicalArchitectAgent(),
    data_scientist: new DataScientistAgent(),
    partnership_specialist: new PartnershipSpecialistAgent(),
    risk_assessor: new RiskAssessmentAgent()
  };
 
  async processBusinessQuery(query: BusinessQuery): Promise<BusinessResponse> {
    // Intelligent agent routing based on query characteristics
    const primaryAgent = await this.routeQueryToAgent(query);
    const supportingAgents = await this.identifySupportingAgents(query);
 
    // Collaborative processing
    const primaryResult = await primaryAgent.process(query);
    const supportingInsights = await Promise.all(
      supportingAgents.map(agent => agent.provideInsights(query, primaryResult))
    );
 
    // Synthesis and final response
    return await this.synthesizeResponse(primaryResult, supportingInsights);
  }
}

Database Architecture

Dual-Database Strategy

Supabase (Operational Data)

interface SupabaseSchema {
  // Real-time operational data
  leagues: {
    id: string;
    name: string;
    sport_type: string;
    operational_data: OperationalMetrics;
    real_time_status: LiveStatus;
  };
 
  partnerships: {
    id: string;
    league_id: string;
    partner_id: string;
    deal_terms: DealStructure;
    performance_metrics: PartnershipMetrics;
    status: PartnershipStatus;
  };
 
  users: {
    id: string;
    role: UserRole;
    permissions: PermissionSet;
    preferences: UserPreferences;
  };
}

Key Features:

  • Row Level Security (RLS) for multi-tenant data isolation
  • Real-time subscriptions for live updates
  • PostgreSQL functions for complex business logic
  • Automatic API generation via Supabase client

Firebase (Analytics & Intelligence)

interface FirebaseSchema {
  // Scalable analytics data
  analytics: {
    league_id: string;
    metrics: AnalyticsMetrics;
    predictions: PredictionData;
    trends: TrendAnalysis;
    timestamp: Timestamp;
  };
 
  intelligence: {
    query: string;
    context: BusinessContext;
    response: IntelligenceResponse;
    feedback: UserFeedback;
    embeddings: VectorEmbeddings;
  };
 
  models: {
    model_id: string;
    type: ModelType;
    version: string;
    performance_metrics: ModelMetrics;
    training_data: TrainingDataset;
  };
}

Key Features:

  • Global distribution with automatic scaling
  • Real-time database for live analytics
  • Cloud Functions for serverless processing
  • ML Kit integration for on-device intelligence

Intelligence Processing Pipeline

Data Ingestion Layer

class DataIngestionPipeline {
  private sources = {
    game_events: new GameEventIngestion(),
    social_media: new SocialMediaIngestion(),
    market_data: new MarketDataIngestion(),
    partnership_activity: new PartnershipIngestion()
  };
 
  async ingestDataStream(streamType: StreamType): Promise<void> {
    const ingestor = this.sources[streamType];
 
    // Real-time processing
    const stream = await ingestor.connect();
    stream.on('data', async (data) => {
      await this.processAndStore(data);
    });
  }
 
  private async processAndStore(data: RawData): Promise<void> {
    // Validate and normalize
    const normalized = await this.normalizeData(data);
 
    // Store in appropriate database
    if (this.isOperationalData(data)) {
      await this.storeInSupabase(normalized);
    } else {
      await this.storeInFirebase(normalized);
    }
 
    // Trigger intelligence processing
    await this.triggerIntelligencePipeline(normalized);
  }
}

AI Processing Layer

Vector Embedding System

class VectorEmbeddingEngine {
  private embeddings = new OpenAIEmbeddings({
    modelName: 'text-embedding-3-large',
    dimensions: 3072
  });
 
  async embedBusinessData(data: BusinessData): Promise<VectorEmbeddings> {
    // Multi-modal embedding generation
    const textEmbeddings = await this.embedText(data.description);
    const numericalEmbeddings = await this.embedMetrics(data.metrics);
    const categoricalEmbeddings = await this.embedCategories(data.categories);
 
    return {
      text: textEmbeddings,
      numerical: numericalEmbeddings,
      categorical: categoricalEmbeddings,
      combined: this.combineEmbeddings([
        textEmbeddings,
        numericalEmbeddings,
        categoricalEmbeddings
      ])
    };
  }
 
  async semanticSearch(query: string, context: BusinessContext): Promise<SearchResults> {
    // Enhance query with context
    const enhancedQuery = await this.enhanceQueryWithContext(query, context);
 
    // Generate query embeddings
    const queryEmbeddings = await this.embeddings.embedQuery(enhancedQuery);
 
    // Perform vector similarity search
    return await this.vectorStore.similaritySearch(queryEmbeddings, {
      limit: 10,
      includeMetadata: true,
      filter: this.buildContextFilter(context)
    });
  }
}

Intelligence Synthesis Engine

class IntelligenceSynthesisEngine {
  private claudeProcessor = new ClaudeProcessor();
  private retriever = new RetrievalEngine();
 
  async synthesizeIntelligence(query: string, context: BusinessContext): Promise<IntelligenceResponse> {
    // Retrieve relevant patterns and data
    const retrievedData = await this.retriever.retrieveRelevantData(query, context);
 
    // Apply Claude.ai reasoning patterns
    const reasoning = await this.claudeProcessor.applyReasoningPatterns(retrievedData, context);
 
    // Generate intelligent insights
    const insights = await this.generateInsights(reasoning, retrievedData);
 
    // Validate and refine
    const validated = await this.validateInsights(insights, context);
 
    return {
      insights: validated,
      confidence: this.calculateConfidence(validated),
      reasoning: reasoning.explanation,
      sources: retrievedData.sources,
      recommendations: this.generateRecommendations(validated)
    };
  }
}

API Architecture

RESTful API Design

// Next.js API Routes with intelligent processing
export default async function handler(
  req: NextApiRequest,
  res: NextApiResponse
) {
  const { query, context } = req.body;
 
  try {
    // Intelligent query processing
    const intelligence = await docsCrewImprover.intelligentSearch(query, context);
 
    // Context-aware response formatting
    const formatted = await formatResponseForContext(intelligence, context);
 
    res.status(200).json({
      success: true,
      data: formatted,
      intelligence: intelligence.metadata
    });
  } catch (error) {
    // Intelligent error handling
    const errorResponse = await handleIntelligentError(error, context);
    res.status(errorResponse.status).json(errorResponse);
  }
}

GraphQL Layer

const typeDefs = gql`
  type League {
    id: ID!
    name: String!
    intelligence: Intelligence!
    partnerships: [Partnership!]!
    analytics: Analytics!
  }
 
  type Intelligence {
    insights: [Insight!]!
    predictions: [Prediction!]!
    recommendations: [Recommendation!]!
    confidence: Float!
  }
 
  type Query {
    league(id: ID!): League
    intelligentSearch(query: String!, context: ContextInput): SearchResult!
    partnershipOpportunities(leagueId: ID!): [Opportunity!]!
  }
`;
 
const resolvers = {
  Query: {
    intelligentSearch: async (_, { query, context }) => {
      return await docsCrewImprover.intelligentSearch(query, context);
    }
  }
};

Frontend Architecture

React Component Hierarchy

// Intelligent component system
interface IntelligentComponentProps {
  userRole: UserRole;
  businessContext: BusinessContext;
  intelligenceLevel: IntelligenceLevel;
}
 
// Context-aware dashboard
function IntelligentDashboard({ userRole, businessContext }: IntelligentComponentProps) {
  const [intelligence, setIntelligence] = useState<IntelligenceData>();
 
  useEffect(() => {
    // Load intelligence based on context
    loadIntelligenceForContext(userRole, businessContext);
  }, [userRole, businessContext]);
 
  return (
    <div className="intelligent-dashboard">
      <IntelligenceHeader intelligence={intelligence} />
      <ContextAwareContent intelligence={intelligence} />
      <IntelligentActions intelligence={intelligence} />
    </div>
  );
}

State Management

// Zustand store with intelligent state management
interface IntelligenceState {
  currentContext: BusinessContext;
  intelligence: IntelligenceData;
  searchResults: SearchResult[];
  processingStatus: ProcessingStatus;
 
  // Intelligent actions
  setContext: (context: BusinessContext) => void;
  performIntelligentSearch: (query: string) => Promise<void>;
  updateIntelligence: (newData: IntelligenceData) => void;
}
 
export const useIntelligenceStore = create<IntelligenceState>((set, get) => ({
  // State initialization
  currentContext: defaultContext,
  intelligence: null,
  searchResults: [],
  processingStatus: 'idle',
 
  // Intelligent context setting
  setContext: async (context) => {
    set({ currentContext: context });
    await get().loadIntelligenceForContext(context);
  },
 
  // Intelligent search with Claude enhancement
  performIntelligentSearch: async (query) => {
    set({ processingStatus: 'processing' });
    try {
      const results = await intelligentSearchAPI(query, get().currentContext);
      set({
        searchResults: results,
        processingStatus: 'completed'
      });
    } catch (error) {
      set({ processingStatus: 'error' });
    }
  }
}));

Security Architecture

Multi-Layer Security

interface SecurityLayers {
  authentication: {
    supabase_auth: SupabaseAuth;
    firebase_auth: FirebaseAuth;
    jwt_tokens: JWTManager;
    multi_factor: MFAManager;
  };
 
  authorization: {
    role_based_access: RBACSystem;
    context_based_permissions: ContextPermissions;
    data_level_security: DataSecurity;
  };
 
  data_protection: {
    encryption_at_rest: EncryptionManager;
    encryption_in_transit: TLSManager;
    data_masking: DataMaskingEngine;
  };
 
  intelligence_security: {
    query_sanitization: QuerySanitizer;
    response_filtering: ResponseFilter;
    audit_logging: AuditLogger;
  };
}

Intelligent Threat Detection

class IntelligentSecurityMonitor {
  async monitorAndRespond(securityEvent: SecurityEvent): Promise<void> {
    // Analyze security event with AI
    const analysis = await this.analyzeSecurityEvent(securityEvent);
 
    // Determine appropriate response
    const response = await this.determineSecurityResponse(analysis);
 
    // Execute response actions
    await this.executeSecurityResponse(response);
 
    // Learn from incident
    await this.updateSecurityModel(securityEvent, response);
  }
}

Performance Optimization

Caching Strategy

interface CachingStrategy {
  multi_layer_cache: {
    browser_cache: BrowserCache;
    cdn_cache: CDNCache;
    application_cache: AppCache;
    database_cache: DBCache;
  };
 
  intelligent_invalidation: {
    context_aware_invalidation: ContextInvalidator;
    predictive_invalidation: PredictiveInvalidator;
    usage_pattern_analysis: UsageAnalyzer;
  };
 
  performance_monitoring: {
    real_time_metrics: PerformanceMonitor;
    bottleneck_detection: BottleneckDetector;
    optimization_recommendations: OptimizationEngine;
  };
}

Scalability Patterns

class ScalabilityManager {
  async scaleBasedOnDemand(demandMetrics: DemandMetrics): Promise<void> {
    // Analyze current demand patterns
    const analysis = await this.analyzeDemandPatterns(demandMetrics);
 
    // Determine scaling requirements
    const scalingPlan = await this.calculateScalingRequirements(analysis);
 
    // Execute scaling operations
    await this.executeScalingPlan(scalingPlan);
 
    // Monitor and adjust
    await this.monitorScalingEffectiveness(scalingPlan);
  }
}

Deployment Architecture

Cloud-Native Deployment

# Kubernetes deployment with intelligent scaling
apiVersion: apps/v1
kind: Deployment
metadata:
  name: altsportsleagues-intelligence
spec:
  replicas: 3
  selector:
    matchLabels:
      app: intelligence-engine
  template:
    metadata:
      labels:
        app: intelligence-engine
    spec:
      containers:
      - name: intelligence-api
        image: altsportsleagues/intelligence:latest
        resources:
          requests:
            memory: "512Mi"
            cpu: "250m"
          limits:
            memory: "2Gi"
            cpu: "1000m"
        env:
        - name: NODE_ENV
          value: "production"
        - name: OPENAI_API_KEY
          valueFrom:
            secretKeyRef:
              name: openai-secrets
              key: api-key
        ports:
        - containerPort: 3000
        livenessProbe:
          httpGet:
            path: /api/health
            port: 3000
          initialDelaySeconds: 30
          periodSeconds: 10
        readinessProbe:
          httpGet:
            path: /api/ready
            port: 3000
          initialDelaySeconds: 5
          periodSeconds: 5
      - name: vector-db
        image: chromadb/chroma:latest
        ports:
        - containerPort: 8000

CI/CD Pipeline

interface CIPipeline {
  stages: {
    test: TestStage;
    build: BuildStage;
    deploy: DeployStage;
    validate: ValidationStage;
  };
 
  intelligent_deployment: {
    canary_deployment: CanaryDeployment;
    blue_green_deployment: BlueGreenDeployment;
    intelligent_rollback: IntelligentRollback;
  };
 
  monitoring: {
    deployment_metrics: DeploymentMetrics;
    performance_validation: PerformanceValidation;
    business_impact_analysis: BusinessImpactAnalysis;
  };
}

This technical architecture specification provides the comprehensive design framework for implementing AltSportsLeagues.ai's intelligent, scalable, and secure sports intelligence platform using Claude.ai-inspired patterns and modern cloud-native technologies.

Platform

Documentation

Community

Support

partnership@altsportsdata.comdev@altsportsleagues.ai

2025 Β© AltSportsLeagues.ai. Powered by AI-driven sports business intelligence.

πŸ€– AI-Enhancedβ€’πŸ“Š Data-Drivenβ€’βš‘ Real-Time