AltSportsLeagues.ai Technical Architecture
System Overview
AltSportsLeagues.ai is a cloud-native, AI-powered sports intelligence platform built on a dual-database architecture combining Supabase for operational data and Firebase for scalable analytics. The system employs Claude.ai-inspired agent orchestration patterns and retrieval-first architecture principles to deliver intelligent insights for alternative sports leagues.
Core Architecture Principles
Retrieval-First Design
Following Claude.ai's "Retrieval Over Generation" philosophy:
interface RetrievalFirstArchitecture {
// Prioritize finding existing solutions over creating new ones
pattern_recognition: {
similarity_search: VectorSimilarity;
template_matching: TemplateEngine;
composition_engine: ComponentAssembler;
};
// Minimize AI generation, maximize reuse
generation_minimization: {
component_reuse: ComponentLibrary;
pattern_application: PatternMatcher;
incremental_building: IncrementalAssembler;
};
// Continuous learning from successful implementations
learning_loop: {
success_pattern_storage: PatternStore;
feedback_integration: FeedbackEngine;
model_refinement: ModelUpdater;
};
}Agent Orchestration Patterns
Multi-agent system inspired by Claude.ai's collaborative intelligence:
class AgentOrchestrator {
private agents = {
business_analyst: new BusinessAnalystAgent(),
technical_architect: new TechnicalArchitectAgent(),
data_scientist: new DataScientistAgent(),
partnership_specialist: new PartnershipSpecialistAgent(),
risk_assessor: new RiskAssessmentAgent()
};
async processBusinessQuery(query: BusinessQuery): Promise<BusinessResponse> {
// Intelligent agent routing based on query characteristics
const primaryAgent = await this.routeQueryToAgent(query);
const supportingAgents = await this.identifySupportingAgents(query);
// Collaborative processing
const primaryResult = await primaryAgent.process(query);
const supportingInsights = await Promise.all(
supportingAgents.map(agent => agent.provideInsights(query, primaryResult))
);
// Synthesis and final response
return await this.synthesizeResponse(primaryResult, supportingInsights);
}
}Database Architecture
Dual-Database Strategy
Supabase (Operational Data)
interface SupabaseSchema {
// Real-time operational data
leagues: {
id: string;
name: string;
sport_type: string;
operational_data: OperationalMetrics;
real_time_status: LiveStatus;
};
partnerships: {
id: string;
league_id: string;
partner_id: string;
deal_terms: DealStructure;
performance_metrics: PartnershipMetrics;
status: PartnershipStatus;
};
users: {
id: string;
role: UserRole;
permissions: PermissionSet;
preferences: UserPreferences;
};
}Key Features:
- Row Level Security (RLS) for multi-tenant data isolation
- Real-time subscriptions for live updates
- PostgreSQL functions for complex business logic
- Automatic API generation via Supabase client
Firebase (Analytics & Intelligence)
interface FirebaseSchema {
// Scalable analytics data
analytics: {
league_id: string;
metrics: AnalyticsMetrics;
predictions: PredictionData;
trends: TrendAnalysis;
timestamp: Timestamp;
};
intelligence: {
query: string;
context: BusinessContext;
response: IntelligenceResponse;
feedback: UserFeedback;
embeddings: VectorEmbeddings;
};
models: {
model_id: string;
type: ModelType;
version: string;
performance_metrics: ModelMetrics;
training_data: TrainingDataset;
};
}Key Features:
- Global distribution with automatic scaling
- Real-time database for live analytics
- Cloud Functions for serverless processing
- ML Kit integration for on-device intelligence
Intelligence Processing Pipeline
Data Ingestion Layer
class DataIngestionPipeline {
private sources = {
game_events: new GameEventIngestion(),
social_media: new SocialMediaIngestion(),
market_data: new MarketDataIngestion(),
partnership_activity: new PartnershipIngestion()
};
async ingestDataStream(streamType: StreamType): Promise<void> {
const ingestor = this.sources[streamType];
// Real-time processing
const stream = await ingestor.connect();
stream.on('data', async (data) => {
await this.processAndStore(data);
});
}
private async processAndStore(data: RawData): Promise<void> {
// Validate and normalize
const normalized = await this.normalizeData(data);
// Store in appropriate database
if (this.isOperationalData(data)) {
await this.storeInSupabase(normalized);
} else {
await this.storeInFirebase(normalized);
}
// Trigger intelligence processing
await this.triggerIntelligencePipeline(normalized);
}
}AI Processing Layer
Vector Embedding System
class VectorEmbeddingEngine {
private embeddings = new OpenAIEmbeddings({
modelName: 'text-embedding-3-large',
dimensions: 3072
});
async embedBusinessData(data: BusinessData): Promise<VectorEmbeddings> {
// Multi-modal embedding generation
const textEmbeddings = await this.embedText(data.description);
const numericalEmbeddings = await this.embedMetrics(data.metrics);
const categoricalEmbeddings = await this.embedCategories(data.categories);
return {
text: textEmbeddings,
numerical: numericalEmbeddings,
categorical: categoricalEmbeddings,
combined: this.combineEmbeddings([
textEmbeddings,
numericalEmbeddings,
categoricalEmbeddings
])
};
}
async semanticSearch(query: string, context: BusinessContext): Promise<SearchResults> {
// Enhance query with context
const enhancedQuery = await this.enhanceQueryWithContext(query, context);
// Generate query embeddings
const queryEmbeddings = await this.embeddings.embedQuery(enhancedQuery);
// Perform vector similarity search
return await this.vectorStore.similaritySearch(queryEmbeddings, {
limit: 10,
includeMetadata: true,
filter: this.buildContextFilter(context)
});
}
}Intelligence Synthesis Engine
class IntelligenceSynthesisEngine {
private claudeProcessor = new ClaudeProcessor();
private retriever = new RetrievalEngine();
async synthesizeIntelligence(query: string, context: BusinessContext): Promise<IntelligenceResponse> {
// Retrieve relevant patterns and data
const retrievedData = await this.retriever.retrieveRelevantData(query, context);
// Apply Claude.ai reasoning patterns
const reasoning = await this.claudeProcessor.applyReasoningPatterns(retrievedData, context);
// Generate intelligent insights
const insights = await this.generateInsights(reasoning, retrievedData);
// Validate and refine
const validated = await this.validateInsights(insights, context);
return {
insights: validated,
confidence: this.calculateConfidence(validated),
reasoning: reasoning.explanation,
sources: retrievedData.sources,
recommendations: this.generateRecommendations(validated)
};
}
}API Architecture
RESTful API Design
// Next.js API Routes with intelligent processing
export default async function handler(
req: NextApiRequest,
res: NextApiResponse
) {
const { query, context } = req.body;
try {
// Intelligent query processing
const intelligence = await docsCrewImprover.intelligentSearch(query, context);
// Context-aware response formatting
const formatted = await formatResponseForContext(intelligence, context);
res.status(200).json({
success: true,
data: formatted,
intelligence: intelligence.metadata
});
} catch (error) {
// Intelligent error handling
const errorResponse = await handleIntelligentError(error, context);
res.status(errorResponse.status).json(errorResponse);
}
}GraphQL Layer
const typeDefs = gql`
type League {
id: ID!
name: String!
intelligence: Intelligence!
partnerships: [Partnership!]!
analytics: Analytics!
}
type Intelligence {
insights: [Insight!]!
predictions: [Prediction!]!
recommendations: [Recommendation!]!
confidence: Float!
}
type Query {
league(id: ID!): League
intelligentSearch(query: String!, context: ContextInput): SearchResult!
partnershipOpportunities(leagueId: ID!): [Opportunity!]!
}
`;
const resolvers = {
Query: {
intelligentSearch: async (_, { query, context }) => {
return await docsCrewImprover.intelligentSearch(query, context);
}
}
};Frontend Architecture
React Component Hierarchy
// Intelligent component system
interface IntelligentComponentProps {
userRole: UserRole;
businessContext: BusinessContext;
intelligenceLevel: IntelligenceLevel;
}
// Context-aware dashboard
function IntelligentDashboard({ userRole, businessContext }: IntelligentComponentProps) {
const [intelligence, setIntelligence] = useState<IntelligenceData>();
useEffect(() => {
// Load intelligence based on context
loadIntelligenceForContext(userRole, businessContext);
}, [userRole, businessContext]);
return (
<div className="intelligent-dashboard">
<IntelligenceHeader intelligence={intelligence} />
<ContextAwareContent intelligence={intelligence} />
<IntelligentActions intelligence={intelligence} />
</div>
);
}State Management
// Zustand store with intelligent state management
interface IntelligenceState {
currentContext: BusinessContext;
intelligence: IntelligenceData;
searchResults: SearchResult[];
processingStatus: ProcessingStatus;
// Intelligent actions
setContext: (context: BusinessContext) => void;
performIntelligentSearch: (query: string) => Promise<void>;
updateIntelligence: (newData: IntelligenceData) => void;
}
export const useIntelligenceStore = create<IntelligenceState>((set, get) => ({
// State initialization
currentContext: defaultContext,
intelligence: null,
searchResults: [],
processingStatus: 'idle',
// Intelligent context setting
setContext: async (context) => {
set({ currentContext: context });
await get().loadIntelligenceForContext(context);
},
// Intelligent search with Claude enhancement
performIntelligentSearch: async (query) => {
set({ processingStatus: 'processing' });
try {
const results = await intelligentSearchAPI(query, get().currentContext);
set({
searchResults: results,
processingStatus: 'completed'
});
} catch (error) {
set({ processingStatus: 'error' });
}
}
}));Security Architecture
Multi-Layer Security
interface SecurityLayers {
authentication: {
supabase_auth: SupabaseAuth;
firebase_auth: FirebaseAuth;
jwt_tokens: JWTManager;
multi_factor: MFAManager;
};
authorization: {
role_based_access: RBACSystem;
context_based_permissions: ContextPermissions;
data_level_security: DataSecurity;
};
data_protection: {
encryption_at_rest: EncryptionManager;
encryption_in_transit: TLSManager;
data_masking: DataMaskingEngine;
};
intelligence_security: {
query_sanitization: QuerySanitizer;
response_filtering: ResponseFilter;
audit_logging: AuditLogger;
};
}Intelligent Threat Detection
class IntelligentSecurityMonitor {
async monitorAndRespond(securityEvent: SecurityEvent): Promise<void> {
// Analyze security event with AI
const analysis = await this.analyzeSecurityEvent(securityEvent);
// Determine appropriate response
const response = await this.determineSecurityResponse(analysis);
// Execute response actions
await this.executeSecurityResponse(response);
// Learn from incident
await this.updateSecurityModel(securityEvent, response);
}
}Performance Optimization
Caching Strategy
interface CachingStrategy {
multi_layer_cache: {
browser_cache: BrowserCache;
cdn_cache: CDNCache;
application_cache: AppCache;
database_cache: DBCache;
};
intelligent_invalidation: {
context_aware_invalidation: ContextInvalidator;
predictive_invalidation: PredictiveInvalidator;
usage_pattern_analysis: UsageAnalyzer;
};
performance_monitoring: {
real_time_metrics: PerformanceMonitor;
bottleneck_detection: BottleneckDetector;
optimization_recommendations: OptimizationEngine;
};
}Scalability Patterns
class ScalabilityManager {
async scaleBasedOnDemand(demandMetrics: DemandMetrics): Promise<void> {
// Analyze current demand patterns
const analysis = await this.analyzeDemandPatterns(demandMetrics);
// Determine scaling requirements
const scalingPlan = await this.calculateScalingRequirements(analysis);
// Execute scaling operations
await this.executeScalingPlan(scalingPlan);
// Monitor and adjust
await this.monitorScalingEffectiveness(scalingPlan);
}
}Deployment Architecture
Cloud-Native Deployment
# Kubernetes deployment with intelligent scaling
apiVersion: apps/v1
kind: Deployment
metadata:
name: altsportsleagues-intelligence
spec:
replicas: 3
selector:
matchLabels:
app: intelligence-engine
template:
metadata:
labels:
app: intelligence-engine
spec:
containers:
- name: intelligence-api
image: altsportsleagues/intelligence:latest
resources:
requests:
memory: "512Mi"
cpu: "250m"
limits:
memory: "2Gi"
cpu: "1000m"
env:
- name: NODE_ENV
value: "production"
- name: OPENAI_API_KEY
valueFrom:
secretKeyRef:
name: openai-secrets
key: api-key
ports:
- containerPort: 3000
livenessProbe:
httpGet:
path: /api/health
port: 3000
initialDelaySeconds: 30
periodSeconds: 10
readinessProbe:
httpGet:
path: /api/ready
port: 3000
initialDelaySeconds: 5
periodSeconds: 5
- name: vector-db
image: chromadb/chroma:latest
ports:
- containerPort: 8000CI/CD Pipeline
interface CIPipeline {
stages: {
test: TestStage;
build: BuildStage;
deploy: DeployStage;
validate: ValidationStage;
};
intelligent_deployment: {
canary_deployment: CanaryDeployment;
blue_green_deployment: BlueGreenDeployment;
intelligent_rollback: IntelligentRollback;
};
monitoring: {
deployment_metrics: DeploymentMetrics;
performance_validation: PerformanceValidation;
business_impact_analysis: BusinessImpactAnalysis;
};
}This technical architecture specification provides the comprehensive design framework for implementing AltSportsLeagues.ai's intelligent, scalable, and secure sports intelligence platform using Claude.ai-inspired patterns and modern cloud-native technologies.