Architecture
Contract Generation Optimization System

Source: data_layer/docs/README_CONTRACT_OPTIMIZATION.md

Contract Generation Optimization System

Overview

This system optimizes contract generation through:

  1. Hierarchical Contract Model - Reduces repetition via inheritance
  2. Contract Fingerprinting - Learns from real, successful contracts
  3. Feedback Loop System - Captures user satisfaction and continuously improves
  4. Layered Context Injection - Progressive enrichment from multiple sources

Architecture

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                    Contract Generation Flow                      β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                              β”‚
                              β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  Layer 1: Base Structure (Hierarchical Model)                   β”‚
β”‚  β€’ Template inheritance (premium/standard/basic/enterprise)     β”‚
β”‚  β€’ Common patterns shared across tiers                          β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                           β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  Layer 2: Tier Preset (Commercial Terms)                        β”‚
β”‚  β€’ Base financial terms for tier                                β”‚
β”‚  β€’ Subtier progression and feature gates                        β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                           β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  Layer 3: Sport Modifier (Archetype Adjustments)                β”‚
β”‚  β€’ Complexity and data richness multipliers                     β”‚
β”‚  β€’ Sport-specific term adjustments                              β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                           β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  Layer 4: Fingerprint Pattern (Real Contract Learning)          β”‚
β”‚  β€’ Language patterns from similar contracts                     β”‚
β”‚  β€’ Commercial structures that closed successfully               β”‚
β”‚  β€’ Key learnings from past deals                                β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                           β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  Layer 5: Negotiation History (Deal Intelligence)               β”‚
β”‚  β€’ Common pushback points and responses                         β”‚
β”‚  β€’ Anti-patterns to avoid                                       β”‚
β”‚  β€’ Successful negotiation strategies                            β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                           β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  Layer 6: Feedback Learning (Continuous Improvement)            β”‚
β”‚  β€’ User satisfaction data from similar contracts                β”‚
β”‚  β€’ Improvement opportunities identified                         β”‚
β”‚  β€’ Pain points to address                                       β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                           β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  Layer 7: Real-time Context (Session State)                     β”‚
β”‚  β€’ User preferences and previous iterations                     β”‚
β”‚  β€’ Adjustments requested in this session                        β”‚
β”‚  β€’ Current negotiation state                                    β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                           β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                   Generated Contract                             β”‚
β”‚  β€’ Context-enriched from all 7 layers                           β”‚
β”‚  β€’ Optimized for user's specific situation                      β”‚
β”‚  β€’ Incorporates learning from past successes                    β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                           β”‚
                           β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚              Feedback Collection (Critical Points)               β”‚
β”‚  β€’ Contract generated ────────► Satisfaction rating             β”‚
β”‚  β€’ Contract reviewed  ────────► Qualitative feedback            β”‚
β”‚  β€’ Negotiation points ────────► Improvement suggestions         β”‚
β”‚  β€’ Contract signed    ────────► Success metrics                 β”‚
β”‚  β€’ Ongoing relationship ───────► Long-term satisfaction         β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                           β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚           Feedback Analysis & Pattern Extraction                 β”‚
β”‚  β€’ Aggregate trends across contracts                            β”‚
β”‚  β€’ Identify success predictors                                  β”‚
β”‚  β€’ Generate improvement recommendations                         β”‚
β”‚  β€’ Update fingerprint library                                   β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                           β–Ό
                 [Feeds back to Layer 6]

Key Components

1. Hierarchical Contract Model (contract_model_v4_hierarchical.json)

Purpose: Eliminate repetition by using inheritance and composition

Key Features:

  • Base templates that define common structure
  • Tier archetypes (premium, standard, basic, enterprise)
  • Sport modifiers for archetype-specific adjustments
  • Subtier progression rules for financial scaling

Benefits:

  • 80% reduction in JSON size
  • Single source of truth for common patterns
  • Easy to update global changes
  • Maintains tier-specific customizations

Usage:

from contextual_contract_builder import ContextualContractBuilder
 
builder = ContextualContractBuilder()
context = builder.build_contract_context(
    league_name="Example League",
    sport_type="Soccer",
    tier="1.3",
    sports_archetype="field_sport",
    questionnaire_data={...}
)

2. Contract Fingerprinting (contract_fingerprints.json)

Purpose: Extract and reuse patterns from real, successful contracts

Fingerprint Schema:

  • Structural patterns: Section order, clause density, complexity
  • Language patterns: Tone, recurring phrases, legal terminology
  • Commercial patterns: Fee structures, payment triggers, escalations
  • Relationship patterns: How partnership is framed
  • Success metrics: Time to signature, satisfaction scores, outcomes

Real Contract Sources:

  • ASD_NLL_LongForm_071025.docx β†’ Premium partnership (Tier 1.3)
  • ASD_GRASSLEAGUE_V2TermSheet_062625.docx β†’ Growth partnership (Tier 2.1)
  • ASD_TermSheet_WORLDSEVENS_073025.docx β†’ Enterprise global (Tier 1.4)

Adding New Fingerprints:

{
  "contract_id": "LEAGUE_DATE",
  "source_document": "path/to/contract.docx",
  "league_name": "League Name",
  "tier_assigned": "1.3",
  "sports_archetype": "stick_sport",
  "structural_patterns": {...},
  "language_patterns": {...},
  "commercial_patterns": {...},
  "success_metrics": {
    "was_signed": true,
    "time_to_signature_days": 42,
    "satisfaction_score": 4.7
  },
  "key_learnings": [
    "What worked well in this deal",
    "What could be improved",
    "Unique insights from this relationship"
  ]
}

3. Feedback Loop System (feedback_loop_system.py)

Purpose: Capture user satisfaction at critical interaction points

Critical Interaction Points:

  1. QUESTIONNAIRE_COMPLETE - After league fills out intake form
  2. LEAGUE_CLASSIFIED - After tier/archetype assignment
  3. TIER_ASSIGNED - After pricing calculation
  4. CONTRACT_GENERATED - After initial contract creation
  5. CONTRACT_REVIEWED - After first review by league
  6. NEGOTIATION_COMPLETE - After negotiation finalization
  7. CONTRACT_SIGNED - After contract execution
  8. ONBOARDING_COMPLETE - After technical onboarding
  9. SIX_MONTH_REVIEW - Mid-contract check-in
  10. RENEWAL_DECISION - Contract renewal/termination

Feedback Types:

  • SATISFACTION: 1-5 rating
  • QUALITATIVE: Open text feedback
  • IMPROVEMENT: Specific suggestions
  • BUG_REPORT: Issues encountered
  • PRAISE: What worked well
  • COMPLAINT: What didn't work

Integration Example:

from feedback_loop_system import FeedbackCollector, InteractionPoint
 
collector = FeedbackCollector()
 
# After contract generation
collector.capture_feedback(
    interaction_point=InteractionPoint.CONTRACT_GENERATED,
    contract_id="NLL_2025_001",
    league_name="National Lacrosse League",
    tier="1.3",
    sports_archetype="stick_sport",
    satisfaction_score=4.5,
    feedback_text="Contract looks great!",
    improvement_suggestions=["Add more fee schedule detail"],
    user_id="league_admin",
    session_id="session_123"
)
 
# Later: Generate summary
summary = collector.generate_contract_summary("NLL_2025_001")
print(f"Avg satisfaction: {summary.avg_satisfaction_score}/5")
print(f"Key learnings: {summary.key_learnings}")

4. Contextual Contract Builder (contextual_contract_builder.py)

Purpose: Progressive enrichment from multiple context sources

Layer Precedence:

Layer 7 (Real-time)
    ↓  overrides
Layer 6 (Feedback)
    ↓  overrides
Layer 5 (Negotiation History)
    ↓  overrides
Layer 4 (Fingerprints)
    ↓  overrides
Layer 3 (Sport Modifier)
    ↓  overrides
Layer 2 (Tier Preset)
    ↓  overrides
Layer 1 (Base Structure)

Building Complete Context:

from contextual_contract_builder import ContextualContractBuilder
 
builder = ContextualContractBuilder()
 
# Build context with all 7 layers
context = builder.build_contract_context(
    league_name="National Lacrosse League",
    sport_type="Lacrosse",
    tier="1.3",
    sports_archetype="stick_sport",
    questionnaire_data={
        "api_available": True,
        "real_time_feed": True,
        "events_per_year": 150
    },
    session_id="session_123",
    user_preferences={
        "tone": "formal",
        "detail_level": "comprehensive"
    }
)
 
# Generate enriched prompt for LLM
prompt = builder.generate_contract_prompt(context)
 
# Explain what each layer contributed
explanations = builder.explain_context_layers(context)
for layer_name, explanation in explanations.items():
    print(f"{layer_name}: {explanation['contribution']}")

Integration with Existing System

Step 1: Update Contract Generation Endpoint

# In your backend API
from contextual_contract_builder import ContextualContractBuilder
from feedback_loop_system import FeedbackCollector, InteractionPoint
 
builder = ContextualContractBuilder()
feedback = FeedbackCollector()
 
@app.post("/generate-contract")
async def generate_contract(request: ContractRequest):
    # Build context
    context = builder.build_contract_context(
        league_name=request.league_name,
        sport_type=request.sport_type,
        tier=request.tier,
        sports_archetype=request.sports_archetype,
        questionnaire_data=request.questionnaire_data,
        session_id=request.session_id
    )
    
    # Generate contract using LLM with enriched prompt
    prompt = builder.generate_contract_prompt(context)
    contract = await generate_with_llm(prompt)
    
    # Capture initial feedback opportunity
    # (User will provide rating after reviewing)
    
    return {
        "contract": contract,
        "context_explanations": builder.explain_context_layers(context),
        "feedback_prompt": "How satisfied are you with this contract? (1-5)"
    }
 
@app.post("/contract-feedback")
async def capture_contract_feedback(request: FeedbackRequest):
    # Capture feedback
    event = feedback.capture_feedback(
        interaction_point=InteractionPoint[request.interaction_point],
        contract_id=request.contract_id,
        league_name=request.league_name,
        tier=request.tier,
        sports_archetype=request.sports_archetype,
        satisfaction_score=request.satisfaction_score,
        feedback_text=request.feedback_text,
        improvement_suggestions=request.improvements,
        user_id=request.user_id,
        session_id=request.session_id
    )
    
    return {"status": "feedback_recorded", "event_id": event.event_id}

Step 2: Add Fingerprinting After Each Signed Contract

@app.post("/contract-signed")
async def contract_signed(request: SignedContractNotification):
    # Generate feedback summary
    summary = feedback.generate_contract_summary(request.contract_id)
    
    # Create fingerprint from successful contract
    fingerprint = {
        "contract_id": request.contract_id,
        "source_document": request.contract_path,
        "league_name": request.league_name,
        "tier_assigned": request.tier,
        "sports_archetype": request.sports_archetype,
        "success_metrics": {
            "was_signed": True,
            "time_to_signature_days": summary.time_to_signature_days,
            "amendments_count": summary.amendments_count,
            "satisfaction_score": summary.avg_satisfaction_score
        },
        "key_learnings": summary.key_learnings
        # ... extract more patterns from contract document
    }
    
    # Add to fingerprint library
    # (Manual review recommended before adding to production)
    save_fingerprint_draft(fingerprint)
    
    return {"status": "fingerprint_created"}

Step 3: Periodic Analysis & Improvement

from feedback_loop_system import ImprovementEngine
 
# Run weekly/monthly
@app.get("/improvement-analysis")
async def analyze_improvements():
    engine = ImprovementEngine(feedback)
    
    # Analyze all feedback
    trends = engine.analyze_trends()
    
    # Generate improvement recommendations
    recommendations = {
        "tier_adjustments": trends["tier_analysis"],
        "sport_adjustments": trends["sport_analysis"],
        "workflow_improvements": trends["stage_analysis"],
        "global_insights": trends["global_patterns"]
    }
    
    # Store for review
    save_improvement_report(recommendations)
    
    return recommendations

Workflow: From Questionnaire to Signed Contract

Phase 1: Intake & Classification

User fills questionnaire
    β†’ Capture feedback (QUESTIONNAIRE_COMPLETE)
    β†’ Classify tier & archetype
    β†’ Capture feedback (LEAGUE_CLASSIFIED, TIER_ASSIGNED)

Phase 2: Contract Generation

Build context with 7 layers
    β†’ Generate enriched contract
    β†’ Capture feedback (CONTRACT_GENERATED)
    β†’ User reviews contract
    β†’ Capture feedback (CONTRACT_REVIEWED)
    β†’ User requests adjustments?
        β†’ Update context with adjustments
        β†’ Regenerate contract
        β†’ Capture feedback (iteration)

Phase 3: Negotiation & Signature

Negotiate terms
    β†’ Capture feedback at key negotiation points
    β†’ Finalize contract
    β†’ Capture feedback (NEGOTIATION_COMPLETE)
    β†’ Sign contract
    β†’ Capture feedback (CONTRACT_SIGNED)
    β†’ Generate contract summary
    β†’ Create fingerprint (if successful)

Phase 4: Ongoing Relationship

Onboarding
    β†’ Capture feedback (ONBOARDING_COMPLETE)
    β†’ 6-month check-in
    β†’ Capture feedback (SIX_MONTH_REVIEW)
    β†’ Renewal decision
    β†’ Capture feedback (RENEWAL_DECISION)
    β†’ Update fingerprint with final metrics

Continuous Improvement Cycle

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  1. Generate contracts with current best practices  β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                   β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  2. Capture user feedback at all critical points    β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                   β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  3. Analyze feedback trends and patterns            β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                   β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  4. Extract fingerprints from successful contracts  β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                   β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  5. Update context layers with new insights         β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                   β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  6. Next contract generation uses improved context  β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                   β”‚
                   └──► (Repeat cycle)

Benefits Summary

1. Reduced Repetition

  • Before: 685 lines of highly repetitive tier definitions
  • After: ~200 lines with inheritance + composition
  • Maintenance: Update once, affects all relevant tiers

2. Learning from Real Contracts

  • Before: Generic templates without real-world validation
  • After: Patterns extracted from actual signed contracts
  • Result: Higher close rates, faster negotiations

3. Continuous Improvement

  • Before: Static templates, no learning mechanism
  • After: Feedback-driven improvements at every interaction
  • Result: System gets better with every contract

4. Layered Context

  • Before: One-size-fits-all approach
  • After: 7 layers of progressively richer context
  • Result: Highly personalized, situation-aware contracts

Next Steps

  1. Extract More Fingerprints: Process all contracts in contract_terms_docx/ to build comprehensive fingerprint library

  2. Integrate Feedback UI: Add satisfaction ratings and feedback forms at each critical interaction point in Streamlit app

  3. LangMem Integration: Connect feedback system to persistent memory for long-term learning

  4. A/B Testing: Test different contract variations and measure which perform better

  5. Automated Fingerprinting: Build NLP pipeline to automatically extract patterns from signed contracts

  6. Predictive Analytics: Use feedback data to predict contract success likelihood before sending

Files Reference

  • contract_model_v4_hierarchical.json - Hierarchical contract model
  • contract_fingerprints.json - Real contract patterns
  • feedback_loop_system.py - Feedback capture and analysis
  • contextual_contract_builder.py - Layered context builder
  • contract_term_presets.json - (Legacy, can be deprecated)
  • contract_prompt_template.txt - (Still used as output template)

Questions?

Contact the development team or refer to inline code documentation.

Platform

Documentation

Community

Support

partnership@altsportsdata.comdev@altsportsleagues.ai

2025 Β© AltSportsLeagues.ai. Powered by AI-driven sports business intelligence.

πŸ€– AI-Enhancedβ€’πŸ“Š Data-Drivenβ€’βš‘ Real-Time